MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

General Description

The MAX13430E-MAX13433E are full- and half-duplex RS-485 transceivers that feature an adjustable low-voltage logic interface for operation in multivoltage systems. This allows direct interfacing to low-voltage ASIC/FPGAs without extra components. The MAX13430E-MAX13433E RS-485 transceivers operate with a VCC voltage supply from +3 V to +5 V . The low-voltage logic interface operates with a voltage supply from +1.62 V to VCC .
The MAX13430E/MAX13432E feature reduced slewrate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 500kbps. The MAX13431E/MAX13433E driver slew rates are not limited, enabling data transmission up to 16 Mbps . The MAX13430E/MAX13431E are intended for half-duplex communications, and the MAX13432E/MAX13433E are intended for full-duplex communications.
The MAX13430E/MAX13431E are available in 10-pin $\mu M A X ®$ and $10-$ pin TDFN packages. The MAX13432E/ MAX13433E are available in 14-pin TDFN and 14-pin SO packages.

Applications

Industrial Control Systems	Motor Control
Portable Industrial	HVAC
Equipment	

Features

- Wide +3V to +5V Input Supply Range
- Low-Voltage Logic Interface +1.62 V (min)
- Ultra-Low Supply Current in Shutdown Mode $10 \mu \mathrm{~A}$ ICC (max), $1 \mu \mathrm{~A}$ IL (max)
- Thermal Shutdown Protection
- Hot-Swap Input Structures on DE and $\overline{R E}$

1/8-Unit Load Allows Up to 256 Transceivers on the Bus

- Enhanced Slew-Rate Limiting (MAX13430E/MAX13432E)
- Extended ESD Protection for RS-485 I/O Pins $\pm 30 \mathrm{kV}$ Human Body Model $\pm 15 k V$ Air-Gap Discharge per IEC 61000-4-2 $\pm 10 \mathrm{kV}$ Contact Discharge per IEC 61000-4-2
- Extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature Range
- Space-Saving TDFN and μ MAX Packages

Typical Application Circuits appears at end of data sheet.

Ordering Information/Selector Guide

PART	PIN-PACKAGE	FULL/HALF DUPLEX	DATA RATE (Mbps)	SLEW RATE LIMITED	TRANSCEIVERS ON BUS	TOP MARK	PACKAGE CODE
MAX13430EETB+	10 TDFN-EP* (3mm x 3mm)	Half	0.5	Yes	256	AUS	T1033-1
MAX13430EEUB+	$10 \mu \mathrm{MAX}$ ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)	Half	0.5	Yes	256	-	U10-2
MAX13431EETB+	$\begin{array}{\|l\|l} \hline 10 \text { TDFN-EP* } \\ (3 \mathrm{~mm} \times 3 \mathrm{~mm}) \end{array}$	Half	16	No	256	AUT	T1033-1
MAX13431EEUB+	$10 \mu \mathrm{MAX}$ ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)	Half	16	No	256	-	U10-2
MAX13432EESD+	14 SO	Full	0.5	Yes	256	-	S14-1
MAX13432EETD+	$\begin{array}{\|l\|} \hline 14 \text { TDFN-EP* } \\ (3 \mathrm{~mm} \times 3 \mathrm{~mm}) \\ \hline \end{array}$	Full	0.5	Yes	256	AEG	T1433-2
MAX13433EESD+	14 SO	Full	16	No	256	-	S14-1
MAX13433EESDN+	14 SO	Full	16	No	256	-	S14-1
MAX13433EETD+	$\begin{array}{\|l\|} \hline 14 \text { TDFN-EP* } \\ (3 \mathrm{~mm} \times 3 \mathrm{~mm}) \\ \hline \end{array}$	Full	16	No	256	AEH	T1433-2

Note: All devices are specified over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

+ Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
N denotes an automotive qualified part.
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.
For pricing, delivery, and ordering information, please contact Maxim Direct
at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

Supply Voltage (VCC) .. 0.3 V to +6 V
Logic Supply Voltage (V_{L}) \qquad
Control Input Voltage ($\overline{\mathrm{RE}}$) \qquad
Control Input Voltage (DE) \qquad $-0.3 V$ to +6 V
Driver Input Voltage (DI)
-0.3 V to +6 V
Driver Output Voltage (Y, Z, A, B)-. 8 V to +13V
Receiver Input Voltage (A, B)
(MAX13430E/MAX13431E)...................................-8V to +13 V
Receiver Input Voltage (A, B)
(MAX13432E/MAX13433E). \qquad
Receiver Output Voltage (RO) \qquad -0.3V to ($\left.V_{L}+0.3 \mathrm{~V}\right)$
Driver Output Current
\qquad $\ldots \pm 250 \mathrm{~mA}$
Short-Circuit Duration (RO, A, B) to GND \qquad Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)

10-Pin μ MAX (derate $8.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad .707 mW
10-Pin TDFN (derate $24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) \qquad 1951 mW
 14-Pin SO (derate $11.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 952 mW Junction-to-Ambient Thermal Resistance (θ_{JA}) (Note 1)
\qquad
10-Pin TDFN .. $41^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin TDFN ... $41^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SO .. $84^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient Thermal Resistance (θ_{Jc}) (Note 1)

10-Pin $\mu \mathrm{MAX}$
10-Pin TDFN ... $9^{\circ} \mathrm{C} / \mathrm{W}$
缺
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $+150^{\circ} \mathrm{C}$

Soldering Temperature (reflow) $260^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
VCC Supply-Voltage Range	VCC		3		5.5	V
VL Supply-Voltage Range	VL		1.62		VCC	V
Icc Supply Current	IcC	$\begin{aligned} & \mathrm{DE}=\overline{\mathrm{RE}}=\text { high, no load } \\ & \mathrm{DE}=\overline{\mathrm{RE}}=\text { low, no load } \\ & \mathrm{DE}=\text { high, } \overline{\mathrm{RE}}=\text { low, no load } \end{aligned}$			2	mA
ICC Supply Current in Shutdown Mode	ISHDN	$D E=$ low, $\overline{R E}=$ high, no load			10	$\mu \mathrm{A}$
VL Supply Current	IL	$\mathrm{RO}=$ no load			1	$\mu \mathrm{A}$
DRIVER						
Differential Driver Output (Figure 1)	VOD	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{C C}=+3 \mathrm{~V}$	2		VCC	V
		$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{~V}_{C C}=+3 \mathrm{~V}$	1.5		$V_{C C}$	
		$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{C C}=+4.5 \mathrm{~V}$	2.25		$V_{C C}$	
		$\mathrm{R}_{\mathrm{L}}=54 \Omega, \mathrm{~V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$	2.25		$V_{C C}$	
Change in Magnitude of Differential Output Voltage	$\Delta \mathrm{V}_{\mathrm{OD}}$	$R \mathrm{~L}=100 \Omega$ or 54Ω, Figure 1 (Note 4)			0.2	V
Driver Common-Mode Output Voltage	Voc	RL $=100 \Omega$ or 54Ω, Figure 1		$\mathrm{V}_{\mathrm{cc}} / 2$	3	V
Change in Magnitude of Common-Mode Voltage	$\Delta \mathrm{V}$ OC	$R \mathrm{~L}=100 \Omega$ or 54Ω, Figure 1 (Note 4)			0.2	V

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage
 Logic Interface

SWITCHING CHARACTERISTICS (MAX13431E/MAX13433E (16Mbps))

$\left(V_{C C}=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{C}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER						
Driver Propagation Delay (Figures 2 and 3)	tDPLH	$C \mathrm{~L}=50 \mathrm{pF}, \mathrm{RDIFF}=54 \Omega$			50	ns
	tDPHL				50	
Driver Differential Output Rise or Fall Time	$t_{\text {R }}, t_{F}$	$C \mathrm{~L}=50 \mathrm{pF}, \mathrm{RL}=54 \Omega$, Figures 2 and 3			15	ns
Differential Driver Output Skew ItDPLH - tDPHLI	tDSKEW	$C \mathrm{~L}=50 \mathrm{pF}, \mathrm{RL}=54 \Omega$, Figures 2 and 3			8	ns
Maximum Data Rate			16			Mbps
Driver Enable to Output High	tDZH	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 4			150	ns
Driver Enable to Output Low	tDZL	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 5			150	ns
Driver Disable Time from Low	tDLz	$C L=50 p F, R L=500 \Omega$, Figure 4			100	ns
Driver Disable Time from High	tDHZ	$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, Figure 5			120	ns
Driver Enable from Shutdown to Output High	tDZH(SHDN)	$C L=50 p F, R L=500 \Omega$, Figure 4			5	$\mu \mathrm{s}$
Driver Enable from Shutdown to Output Low	tDZL(SHDN)	$C L=50 p F, R L=500 \Omega$, Figure 5			5	$\mu \mathrm{s}$
RECEIVER						
Receiver Propagation Delay (Figures 6 and 7)	tRPLH	$C \mathrm{~L}=15 \mathrm{pF}$			80	ns
	tRPHL				80	
Receiver Output Skew	tRSKEW	$C_{L}=15 \mathrm{pF}$, Figures 6 and 7			13	ns
Maximum Data Rate			16			Mbps
Receiver Enable to Output Low	tRZL	Figure 8			50	ns
Receiver Enable to Output High	tRZH	Figure 8			50	ns
Receiver Disable Time from Low	tRLZ	Figure 8			50	ns
Receiver Disable Time from High	trHz	Figure 8			50	ns
Receiver Enable from Shutdown to Output High	tRZH(SHDN)	Figure 8			5	$\mu \mathrm{s}$
Receiver Enable from Shutdown to Output Low	tRZL(SHDN)	Figure 8			5	$\mu \mathrm{s}$
DRIVER/RECEIVER						
Time to Shutdown	tshDN		50	340	700	ns

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

SWITCHING CHARACTERISTICS (MAX13430E/MAX13432E (500kbps))

$\left(V_{C C}=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
DRIVER					
Driver Propagation Delay (Figures 2 and 3)	tDPLH	$C \mathrm{~L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=54 \Omega$	180	800	ns
	tDPHL		180	800	
Driver Differential Output Rise or Fall Time	t_{R}, t_{F}	$C L=50 p F, R L=54 \Omega$, Figures 2 and 3	200	800	ns
Differential Driver Output Skew ItDPLH - tDPHLI	tDSKEW	$C L=50 p F, R L=54 \Omega$, Figures 2 and 3		100	ns
Maximum Data Rate			500		kbps
Driver Enable to Output High	tDZH	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 4		2.5	$\mu \mathrm{s}$
Driver Enable to Output Low	tDZL	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 5		2.5	$\mu \mathrm{s}$
Driver Disable Time from Low	tDLz	$C L=50 p F, R L=500 \Omega$, Figure 4		100	ns
Driver Disable Time from High	tDHZ	$C_{L}=50 p F, R_{L}=500 \Omega$, Figure 5		120	ns
Driver Enable from Shutdown to Output High	tDZH(SHDN)	$C L=50 p F, R L=500 \Omega$, Figure 4		5	$\mu \mathrm{S}$
Driver Enable from Shutdown to Output Low	tDZL(SHDN)	$C L=50 p F, R L=500 \Omega$, Figure 5		5	$\mu \mathrm{S}$
RECEIVER					
Receiver Propagation Delay (Figures 6 and 7)	tRPLH	$C L=15 p F$		200	ns
	tRPHL			200	
Receiver Output Skew	trSKEW	$C_{L}=15 \mathrm{pF}$, Figures 6 and 7		30	ns
Maximum Data Rate			500		kbps
Receiver Enable to Output Low	tRZL	Figure 8		50	ns
Receiver Enable to Output High	tRZH	Figure 8		50	ns
Receiver Disable Time from Low	tRLZ	Figure 8		50	ns
Receiver Disable Time from High	trHZ	Figure 8		50	ns
Receiver Enable from Shutdown to Output High	trZH(SHDN)	Figure 8		5	$\mu \mathrm{s}$
Receiver Enable from Shutdown to Output Low	trZL(SHDN)	Figure 8		5	$\mu \mathrm{S}$

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

SWITCHING CHARACTERISTICS (MAX13430E/MAX13432E (500kbps)) (continued)

$\left(V_{C C}=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}$ to $\mathrm{V} C \mathrm{C}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are $\mathrm{V} C \mathrm{C}=+5 \mathrm{~V}, \mathrm{~V} \mathrm{~L}=+1.8 \mathrm{~V}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER/RECEIVER	tSHDN		50	340	700	ns
Time to Shutdown						

Note 2: Parameters are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. Limits over temperature are guaranteed by design.
Note 3: All currents into the device are positive. All currents out of the device are negative. All voltages are referenced to device ground, unless otherwise noted.
Note 4: $\Delta \mathrm{V}_{O D}$ and $\Delta \mathrm{V}_{O C}$ are the changes in $\mathrm{V}_{O D}$ and $\mathrm{V}_{O C}$, respectively, when the D input changes state.
Note 5: The short-circuit output current is the peak current just prior to current limiting; the short-circuit foldback output current applies during current limiting to allow a recovery from bus contention.

Typical Operating Characteriststics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

RS-485 Transceivers with Low-Voltage Logic Interface

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

SHUTDOWN CURRENT vs. TEMPERATURE

OUTPUT CURRENT vs. TRANSMITTER OUTPUT-HIGH VOLTAGE

DRIVER PROPAGATION vs. TEMPERATURE

MAX13432E DRIVER PROPAGATION DELAY (500kbps)

OUTPUT CURRENT vs. TRANSMITTER OUTPUT-LOW VOLTAGE

DRIVER PROPAGATION vs. TEMPERATURE (MAX13433E)

MAX13433E DRIVER PROPAGATION DELAY (16Mbps)

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

Test Circuits and Waveforms

Figure 1. Driver DC Test Load

Figure 3. Driver Propagation Delays

MAX13430E-MAX13433E
RS-485 Transceivers with Low-Voltage Logic Interface

Test Circuits and Waveforms (continued)

Figure 4. Driver Enable and Disable Times ($t_{D H Z}, t_{D Z H}$, and $\left.t_{D Z H(S H D N)}\right)$

Figure 5. Driver Enable and Disable Times (tDZL, $t_{D L Z}$, and $t_{D Z L(S H D N)) ~}^{\text {) }}$

MAX13430E-MAX13433E
 RS-485 Transceivers with Low-Voltage Logic Interface

Test Circuits and Waveforms (continued)

Figure 6. Receiver Propagation Delay Test Circuit

Figure 7. Receiver Propagation Delays

Figure 8. Receiver Enable and Disable Times

MAX13430E-MAX13433E
 RS-485 Transceivers with Low-Voltage Logic Interface

Pin Configurations

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage
 Logic Interface

Pin Description

PIN		NAME	FUNCTION
MAX13430E/MAX13431E			
$\mu \mathrm{MAX}$	TDFN		
1	1	VL	V_{L} Input Logic-Supply Voltage. Bypass V_{L} with a $0.1 \mu \mathrm{~F}$ ceramic capacitor located as close as possible to the input.
2	2	RO	Receiver Output. When $\overline{R E}$ is low and if $(A-B) \geq-50 \mathrm{mV}$, RO is high; if $(A-B) \leq-200 \mathrm{mV}$, RO is low.
3	3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive $\overline{\mathrm{RE}}$ high and DE low to enter low-power shutdown mode. DE is a hot-swap input (see the Hot-Swap Capability section for details.)
4	4	$\overline{\mathrm{RE}}$	Active-Low Receiver Output Enable. Drive $\overline{\mathrm{RE}}$ low to enable RO; RO is high impedance when $\overline{R E}$ is high. Drive $\overline{R E}$ high and DE low to enter low-power shutdown mode. $\overline{R E}$ is a hot-swap input (see the Hot-Swap Capability section for details.)
5	5	DI	Driver Input. With DE high, a low on DI forces noninverting output low and inverting output high. Similarly, a high on DI forces noninverting output high and inverting output low.
6	6	GND	Ground
7	7	N.C.	No Connection. Not internally connected. N.C. can be connected to GND.
8	8	A	Noninverting Receiver Input and Noninverting Driver Output
9	9	B	Inverting Receiver Input and Inverting Driver Output
10	10	VCC	V_{CC} Input Supply Voltage. Bypass V_{C} with a $1 \mu \mathrm{~F}$ ceramic capacitor located as close as possible to the input for full ESD protection. If full ESD protection is not required, bypass V_{Cc} with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
-	-	EP	Exposed Pad (TDFN Only). Connect EP to GND.

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

Pin Description (continued)

PIN		NAME	FUNCTION
MAX13432E/MAX13433E			
SO	TDFN		
1	1	VL	V_{L} Input Logic Supply Voltage. Bypass V_{L} with a $0.1 \mu \mathrm{~F}$ ceramic capacitor located as close as possible to the input.
2	2	RO	Receiver Output. When $\overline{R E}$ is low and if $(A-B) \geq-50 \mathrm{mV}, R O$ is high; if $(A-B) \leq-200 \mathrm{mV}$, RO is low.
3	3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive $\overline{\mathrm{RE}}$ high and DE low to enter low-power shutdown mode. DE is a hot-swap input (see the Hot-Swap Capability section for details.)
4	4	$\overline{\mathrm{RE}}$	Active-Low Receiver Output Enable. Drive $\overline{\mathrm{RE}}$ low to enable RO; RO is high impedance when $\overline{\mathrm{RE}}$ is high. Drive $\overline{\mathrm{RE}}$ high and DE low to enter low-power shutdown mode. $\overline{\mathrm{RE}}$ is a hot-swap input (see the Hot-Swap Capability section for details.)
5	5	DI	Driver Input. With DE high, a low on DI forces noninverting output low and inverting output high. Similarly, a high on DI forces noninverting output high and inverting output low.
6	6	GND	Ground
7, 13	7, 13	N.C.	No Connection. Not internally connected. N.C. can be connected to GND.
8	8	GND	Ground
9	9	Y	Noninverting Driver Output
10	10	Z	Inverting Driver Output
11	11	B	Inverting Receiver Input
12	12	A	Noninverting Receiver Input
14	14	VCC	V_{C} Input Supply Voltage. Bypass V_{C} with a $1 \mu \mathrm{~F}$ ceramic capacitor located as close as possible to the input for full ESD protection. If full ESD protection is not required, bypass V_{Cc} with a $0.1 \mu \mathrm{~F}$ ceramic capacitor.
-	-	EP	Exposed Pad (TDFN Only). Connect EP to GND.

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

Function Tables and Functional Diagrams

MAX13432E/MAX13433E (Full Duplex)

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{\mathrm{RE}}$	DE	DI	Z	Y
X	1	1	0	1
X	1	0	1	0
0	0	X	HighImpedance	HighImpedance
1	0	X	Shutdown	
RECEIVING				
INPUTS			OUTPUT	
$\overline{\mathrm{RE}}$	DE	A-B	RO	
0	X	$\geq-50 \mathrm{mV}$	1	
0	X	$\leq-200 \mathrm{mV}$	0	
0	X	Open/ Shorted	1	
1	1	X	High-Impedance	
1	0	X	Shutdown	

MAX13430E/MAX13431E (Half Duplex)

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{\mathrm{RE}}$	DE	DI	B	A
X	1	1	0	1
X	1	0	1	0
1	0	X	HighImpedance	HighImpedance
0	0	X	Shutdown*	
RECEIVING				
INPUTS			OUTPUT	
$\overline{\mathrm{RE}}$	DE	A-B	RO	
0	X	$\geq-50 \mathrm{mV}$	1	
0	X	$\leq-200 \mathrm{mV}$	0	
0	X	Open/ Shorted	1	
1	1	x	High-Impedance	
1	0	X	Shutdown*	

x = Don't care.
*Shutdown mode, driver and receiver outputs are in high impedance.

Figure 9. Functional Diagrams

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

Detailed Description

The MAX13430E-MAX13433E are full- and half-duplex RS-485 transceivers that feature an adjustable lowvoltage logic interface for application in multivoltage systems. This allows direct interfacing to lowvoltage ASIC/FPGAs without extra components. The MAX13430E-MAX13433E RS-485 transceivers operate with a VCC voltage supply from +3 V to +5 V . The lowvoltage logic interface operates with a voltage supply from +1.62 V to V_{Cc}.
The MAX13430E-MAX13433E are $\pm 30 \mathrm{kV}$ ESD-protected RS-485 transceivers with one driver and one receiver. All devices have a 1/8-unit load receiver input impedance, allowing up to 256 transceivers on the bus. These devices include fail-safe circuitry, guaranteeing a logic-high receiver output when receiver inputs are open or shorted. The receivers output a logic-high if all transmitters on a terminated bus are disabled (high impedance). All devices feature hot-swap capability to eliminate false transitions on the bus during power-up or hot insertion.
The MAX13430E/MAX13432E feature reduced slewrate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 500kbps. The MAX13431E/MAX13433E driver slew rates are not limited, enabling data transmission up to 16Mbps.
The MAX13430E-MAX13433E transceivers draw $2 m A$ of supply current when unloaded or when fully loaded with the drivers disabled. The MAX13430E/ MAX13431E are intended for half-duplex communications, and the MAX13432E/MAX13433E are intended for full-duplex communications.

Low-Voltage Logic Interface

V_{L} is the voltage supply for the low-voltage logic interface and receiver output. VL operates with voltage supply from +1.62 V to VCC .

Fail Safe
The MAX13430E family guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. This is done by setting the receiver input threshold between -50 mV and -200 mV . If the differential receiver input voltage ($\mathrm{A}-\mathrm{B}$) is greater than or equal to $-50 \mathrm{mV}, \mathrm{RO}$ is logic-high.

If $(A-B)$ is less than or equal to -200 mV , $R \mathrm{O}$ is logiclow. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage is pulled to OV by the termination. With the receiver thresholds of the MAX13430E family, this results in a logic-high with a 50 mV minimum noise margin. The -50 mV to -200 mV threshold complies with the $\pm 200 \mathrm{mV}$ EIA/TIA/RS-485 standard.

Hot-Swap Capability
When circuit boards are inserted into a hot or powered backplane, differential disturbances to the data bus can lead to data errors. Upon initial circuit-board insertion, the data communication processor undergoes its own power-up sequence. During this period, the processor's logic-output drivers are high impedance and are unable to drive the DE and $\overline{R E}$ inputs of these devices to a defined logic level. Leakage currents up to $\pm 10 \mu \mathrm{~A}$ from the high-impedance state of the processor's logic drivers could cause standard CMOS enable inputs of a transceiver to drift to an incorrect logic level. Additionally, parasitic circuit-board capacitance could cause coupling of V_{L} or GND to the enable inputs. Without the hot-swap capability, these factors could improperly enable the transceiver's driver or receiver. When V_{L} rises, an internal pulldown circuit holds DE low and $\overline{R E}$ high. After the initial power-up sequence, the pulldown circuit becomes transparent, resetting the hot-swap tolerable input.

$\pm 30 k V$ ESD Protection

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13430E family of devices have extra protection against static electricity. Maxim's engineers have developed state-of-theart structures to protect these pins against ESD of $\pm 30 \mathrm{kV}$ without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, the MAX13430E-MAX13433E keep working without latchup or damage. ESD protection can be tested in various ways. The transmitter outputs and receiver inputs of the MAX13430E-MAX13433E are characterized for protection to the following limits:

- $\pm 30 \mathrm{kV}$ using the Human Body Model
- $\pm 10 \mathrm{kV}$ using the Contact Discharge method specified in IEC 61000-4-2
- $\pm 15 \mathrm{kV}$ using the Air Gap Discharge method specified in IEC 61000-4-2

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 10a shows the Human Body Model, and Figure 10b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor.

IEC 61000-4-2
The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does

Figure 10a. Human Body ESD Test Model

Figure 10c. IEC 61000-4-2 ESD Test Model
not specifically refer to integrated circuits. The MAX13430E family of devices helps you design equipment to meet IEC 61000-4-2, without the need for additional ESD-protection components.
The major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 10c shows the IEC 61000-4-2 model, and Figure 10d shows the current waveform for IEC 61000-4-2 ESD Contact Discharge test.

Figure 10b. Human Body Current Waveform

Figure 10d. IEC 61000-4-2 ESD Generator Current Waveform

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

Applications Information

256 Transceivers on the Bus

The standard RS-485 receiver input impedance is a one-unit load ($12 \mathrm{k} \Omega$), and the standard driver can drive up to 32 unit loads. The MAX13430E family of transceivers has a 1/8-unit load receiver input impedance (96k Ω), allowing up to 256 transceivers to be connected in parallel on one communication line. Any combination of these devices, as well as other RS-485 transceivers with a total of 32-unit loads or less, can be connected to the line.

Reduced EMI and Reflections

The MAX13430E/MAX13432E feature reduced slewrate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, allowing error-free data transmission up to 500kbps.

Driver Output Protection
Two mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. The first, a foldback current limit on the output stage, provides immediate protection against short circuits over the whole common-mode voltage range (see the Typical Operating Characteristics.) The second, a thermal-shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds $+150^{\circ} \mathrm{C}$ (typ).

Typical Applications

The MAX13430E/MAX13433E transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 11 and 12 show typical network applications circuits. To minimize reflections, terminate the line at both ends with its characteristic impedance, and keep stub lengths off the main line as short as possible. The slew-rate-limited MAX13430E/MAX13432E allow the RS-485 network to be more tolerant of imperfect termination.

MAX13430E-MAX13433E
RS-485 Transceivers with Low-Voltage
Logic Interface
Typical Application Circuits

Figure 11. Typical Half-Duplex RS-485 Network

Figure 12. Typical Full-Duplex RS-485 Network

RS-485 Transceivers with Low-Voltage Logic Interface

Chip Information

PROCESS: BiCMOS

Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
$10 \mu \mathrm{MAX}$	$\mathrm{U} 10-2$	$\underline{21-0061}$
14 TDFN-EP	$\mathrm{T} 1433-2$	$\underline{21-0137}$
10 TDFN-EP	$\mathrm{T} 1033-1$	$\underline{21-0137}$
14 SO	$\mathrm{S} 14-1$	$\underline{21-0041}$

MAX13430E-MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 08$	Initial release	-
1	$5 / 09$	Updated Ordering Information	1
2	$5 / 10$	Added an automotive temperature grade part to the Ordering Information	1

maxim integrated $_{\text {mw }}$

[^0]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
MAX13430EETB + T MAX13430EEUB + MAX13430EEUB + T MAX13431EETB + T MAX13431EEUB +
MAX13431EEUB+T MAX13432EESD + MAX13432EESD +T MAX13432EETD+T MAX13433EESD +
MAX13433EESD+T MAX13433EETD+T

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
 © 2010 Maxim Integrated

 The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.

