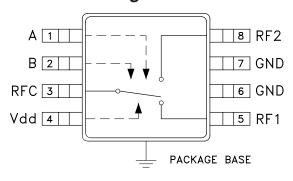


v01.0404

### HMC484MS8G


## GaAs MMIC 10 WATT T/R SWITCH DC - 3.0 GHz

### Typical Applications

The HMC484MS8G is ideal for:

- Wireless Infrastructure
- ISM/Cellular Portables/Handsets
- Automotive Telematics
- Mobile Radio
- Test Equipment

### **Functional Diagram**



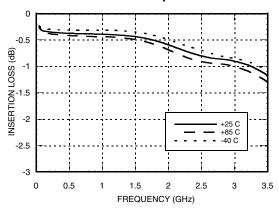
#### **Features**

High RF Power Handling: > +40 dBm High Third Order Intercept: > +70 dBm Single Positive Supply: +3 to +10 Vdc Low Insertion Loss: 0.4 to 0.6 dB

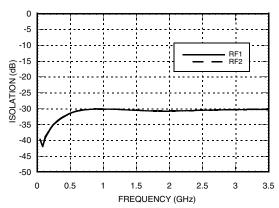
Ultra Small MSOP8G Package: 14.8 mm<sup>2</sup>

### **General Description**

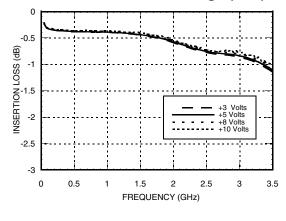
The HMC484MS8G is a low-cost SPDT switch in an 8-lead MSOPG package for use in transmit-receive applications which require very low distortion at high input signal power levels, through 10 watts (+40 dBm). The device can control signals from DC to 3.0 GHz. The design provides exceptional intermodulation performance; > +70 dBm third order intercept at +5 volt bias. RF1 and RF2 are reflective shorts when "OFF". On-chip circuitry allows single positive supply operation from +3 Vdc to +10 Vdc at very low DC current with control inputs compatible with CMOS and most TTL logic families.


### Electrical Specifications,

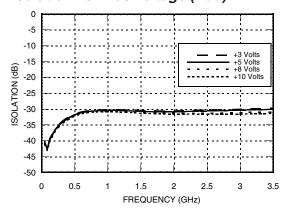
T<sub>A</sub> = +25° C, VctI = 0/+5 Vdc, Vdd = +5 Vdc (Unless Otherwise Stated), 50 Ohm System


| A                                                                                    |                                                              |                |                          |                          |                      |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------|--------------------------|--------------------------|----------------------|
| Parameter                                                                            | Frequency                                                    | Min.           | Тур.                     | Max.                     | Units                |
| Insertion Loss                                                                       | DC - 1.0 GHz<br>DC - 2.0 GHz<br>DC - 2.5 GHz<br>DC - 3.0 GHz |                | 0.4<br>0.6<br>0.8<br>0.9 | 0.6<br>0.8<br>1.1<br>1.3 | dB<br>dB<br>dB<br>dB |
| Isolation                                                                            | DC - 3.0 GHz                                                 | 26             | 30                       |                          | dB                   |
| Return Loss (On State)                                                               | DC - 1.0 GHz<br>DC - 2.0 GHz<br>DC - 2.5 GHz<br>DC - 3.0 GHz |                | 24<br>20<br>17<br>13     |                          | dB<br>dB<br>dB<br>dB |
|                                                                                      | 0.5 - 3.0 GHz                                                |                | 32<br>36<br>39           |                          | dBm<br>dBm<br>dBm    |
|                                                                                      | 0.5 - 3.0 GHz                                                | 32<br>37<br>40 | 35.5<br>40<br>>40        |                          | dBm<br>dBm<br>dBm    |
| Input Third Order Intercept (Two-tone input power = +30 dBm each tone)               | 0.5 - 1.0 GHz<br>0.5 - 3.0 GHz                               |                | 72<br>70                 |                          | dBm<br>dBm           |
| Switching Characteristics  tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF) | DC - 3.0 GHz                                                 |                | 15<br>40                 |                          | ns<br>ns             |

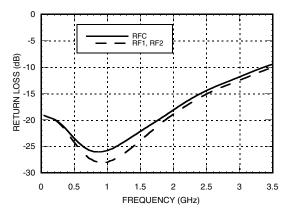



### Insertion Loss vs. Temperature

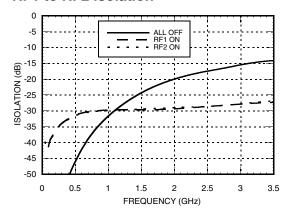



#### Isolation



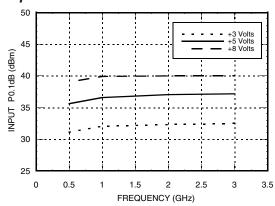

### Insertion Loss vs. Bias Voltage (Vdd)




### Isolation vs. Bias Voltage (Vdd)



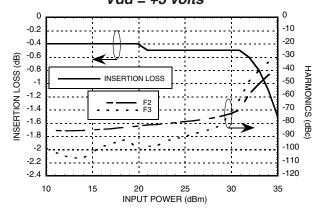
#### Return Loss



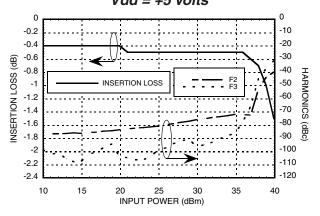

### RF1 to RF2 Isolation



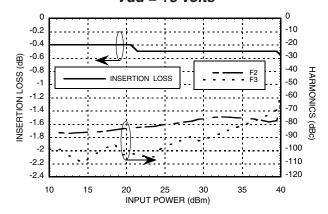



### Input P0.1dB vs. Vdd




### Input P1dB @ Vdd = +5 Volts

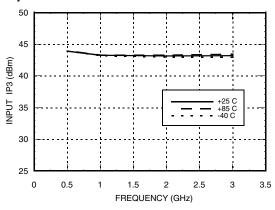



### 2nd & 3rd Harmonics @ 900 MHz, Vdd = +3 Volts

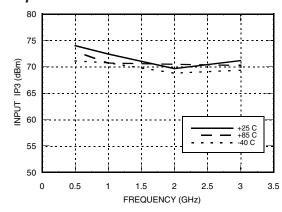


### 2nd & 3rd Harmonics @ 900 MHz, Vdd = +5 Volts

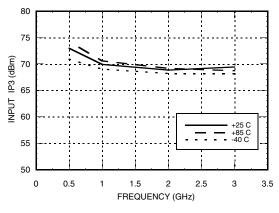



### 2nd & 3rd Harmonics @ 900 MHz, Vdd = +8 Volts

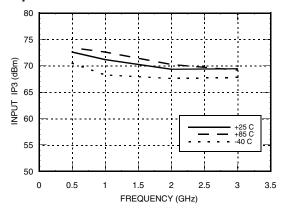



Contact HMC Applications Group for input third order & input compression data from DC - 0.5 GHz.

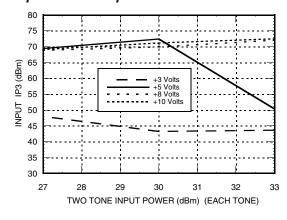



#### Input IP3 @ Vdd = +3 Volts

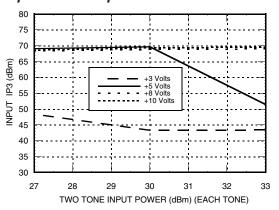



Input IP3 @ Vdd = +5 Volts




### Input IP3 @ Vdd = +8 Volts




Input IP3 @ Vdd = +10 Volts



### Input IP3 vs. Input Power @ 900 MHz



Input IP3 vs. Input Power @ 1900 MHz





### Typical 0.5 to 3.0 GHz Compression vs. Bias Voltage (Vdd)

| -        |                                       | • • • • •                             |
|----------|---------------------------------------|---------------------------------------|
| Bias Vdd | Input Power for 0.1 dB<br>Compression | Input Power for 1.0 dB<br>Compression |
| (Volts)  | (dBm)                                 | (dBm)                                 |
| +3       | 32                                    | 35.5                                  |
| +5       | 36                                    | 40                                    |
| +8       | 39                                    | >40                                   |
| +10      | >40                                   | >40                                   |

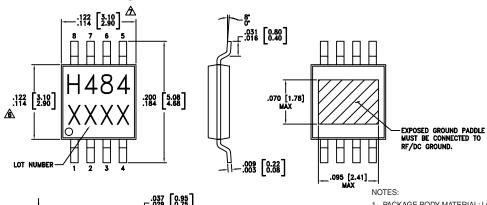
### Bias Voltage & Current

| Vdd (Vdc) | Typical Idd (μA) |
|-----------|------------------|
| +3        | 0.5              |
| +5        | 10               |
| +8        | 50               |
| +10       | 75               |

### Control Voltages

| State | Bias Condition                |
|-------|-------------------------------|
| Low   | 0 to +0.2 Vdc @ 10 μA Typical |
| High  | Vdd ± 0.2 Vdc @ 10 μA Typical |

### Absolute Maximum Ratings

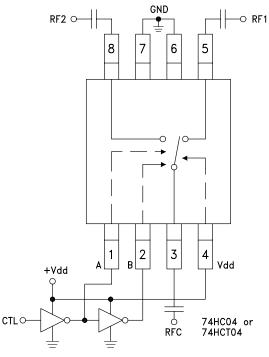

| RF Input Power (Vctl = 0V/+8V) (0.5 - 3 GHz)                  | +40 dBm (T = +85 °C)          |
|---------------------------------------------------------------|-------------------------------|
| Supply Voltage Range (Vdd)<br>(Vctl = 0V)                     | +13 Vdc                       |
| Control Voltage Range (A & B)                                 | Vdd - 13 Vdc to Vdd + 0.7 Vdc |
| Hot Switch Power Level (Vdd = +8V)                            | 39 dBm                        |
| Channel Temperature                                           | 150 °C                        |
| Continuous Pdiss (T = 85 °C)<br>(derate 25 mW/°C above 85 °C) | 1.6 W                         |
| Thermal Resistance                                            | 40 °C/W                       |
| Storage Temperature                                           | -65 to +150 °C                |
| Operating Temperature                                         | -40 to +85 °C                 |

Note: DC blocking capacitors are required at ports RFC, RF1 and RF2. Their value will determine the lowest transmission frequency.

### Truth Table

| Control Input (Vctl) |      | Signal Path State |            |  |
|----------------------|------|-------------------|------------|--|
| Α                    | В    | RFC to RF1        | RFC to RF2 |  |
| High                 | Low  | Off               | On         |  |
| Low                  | High | On                | Off        |  |
| Low                  | Low  | Off               | Off        |  |

### **Outline Drawing**




.043 [1.10] .025 [0.75] .025 [0.75] .025 [0.75] .025 [0.75] .025 [0.65] TYP ...

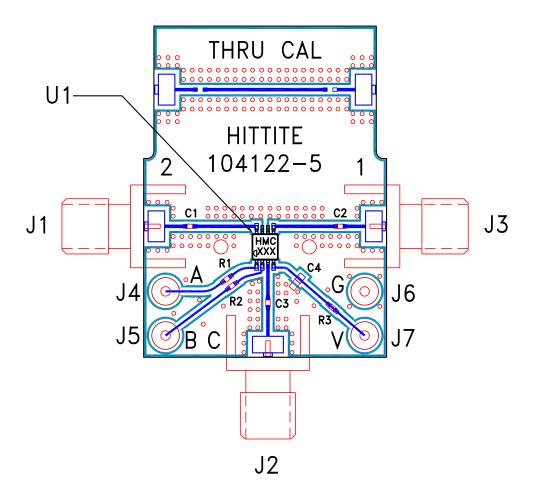
- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEADFRAME MATERIAL: COPPER ALLOY
- 3. LEADFRAME PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- ⚠ DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 8. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.



### Typical Application Circuit



#### Notes:


- 1. Set logic gate and switch Vdd = +3V to +10V and use HCT series logic to provide a TTL driver interface.
- 2. Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of +3 to +10 Volts applied to the CMOS logic gates and to pin 4 of the RF switch.
- DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- 4. Highest RF signal power capability is achieved with V set to +10V. The switch will operate properly (but at lower RF power capability) at bias voltages down to +3V.

### Pin Descriptions

| Pin Number | Function      | Description                                                                         | Interface Schematic                       |
|------------|---------------|-------------------------------------------------------------------------------------|-------------------------------------------|
| 1          | А             | See truth table and control voltage table.                                          | A,B 0———————————————————————————————————— |
| 2          | В             | See truth table and control voltage table.                                          |                                           |
| 3, 5, 8    | RFC, RF1, RF2 | This pin is DC coupled and matched to 50 Ohms.<br>Blocking capacitors are required. |                                           |
| 4          | Vdd           | Supply Voltage                                                                      |                                           |
| 6, 7       | GND           | Package bottom must also<br>be connected to PCB RF ground.                          |                                           |



### **Evaluation Circuit Board**



### List of Material for Evaluation PCB 104124\*

| Item                                   | Description                 |
|----------------------------------------|-----------------------------|
| J1 - J3                                | PC Mount SMA RF Connector   |
| J4 - J7                                | DC Pin                      |
| C1 - C3                                | 100 pF capacitor, 0402 Pkg. |
| C4                                     | 10 KpF capacitor, 0603 Pkg. |
| R1 - R3                                | 100 Ohm Resistor, 0402 Pkg. |
| U1                                     | HMC484MS8G T/R Switch       |
| PCB**                                  | 104122 PCB                  |
| ** Circuit Board Material: Rogers 4350 |                             |

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

<sup>\*</sup>Reference this number when ordering complete evaluation PCB.





Notes:

14