Hex Inverter with Open-Drain Outputs

High-Performance Silicon-Gate CMOS

The MC74AC/ACT05 is identical in pinout to the LS05. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with TTL outputs.

Features

- Outputs Source/Sink 24 mA
- 'ACT05 Has TTL Compatible Inputs
- These are Pb–Free Devices

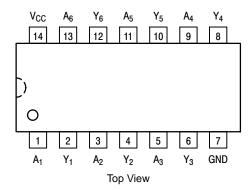


Figure 1. Pinout: 14-Lead Packages

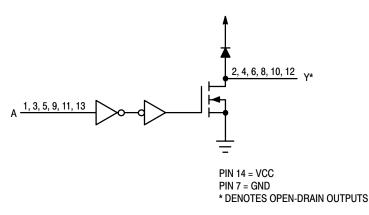
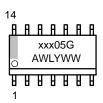


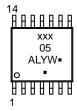
Figure 2. Logic Diagram

1


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS



SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

xxx = AC or ACT

A = Assembly Location

WL or L = Wafer Lot Y = Year WW or W = Work Week

(Note: Microdot may be in either location)

= Pb-Free Package

FUNCTION TABLE

Input A	Output Y
L	Z
Н	L

NOTE: Z = High Impedance

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		$-0.5 \le V_{I} \le V_{CC} + 0.5$	V
Vo	DC Output Voltage	(Note 1)	$-0.5 \le V_{O} \le V_{CC} + 0.5$	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±50	mA
Io	DC Output Sink/Source Current		±50	mA
Icc	DC Supply Current per Output Pin		±50	mA
I _{GND}	DC Ground Current per Output Pin		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead temperature, 1 mm from Case for 10 Second	ds	260	°C
TJ	Junction temperature under Bias		+ 150	°C
θ_{JA}	Thermal Resistance (Note 2)	SOIC TSSOP	125 170	°C/W
P _D	Power Dissipation in Still Air at 85°C	SOIC TSSOP	125 170	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating Oxygo	en Index: 30% – 35%	UL 94 V-0 @ 0.125 in	
V _{ESD}	Ma	Body Model (Note 3) achine Model (Note 4) Device Model (Note 5)	> 2000 > 200 > 1000	V
I _{Latch-Up}	Latch-Up Performance Above V _{CC} and Below 0	GND at 85°C (Note 6)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Io absolute maximum rating must be observed.
- 2. The package thermal impedance is calculated in accordance with JESD51–7.
- 3. Tested to EIA/JESD22-A114-A.
- 4. Tested to EIA/JESD22-A115-A.
- Tested to JESD22-C101-A.
- 6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Min	Unit
.,		'AC	2.0	5.0	6.0	.,
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V
VREG	DC Regulated Power Voltage (Ref. to GND)		0	_	V _{CC}	V
		V _{CC} @ 3.0 V	_	150	-	
t_r , t_f	t _r , t _f Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	_	40	-	ns/V
	The Bevious except commit inputs	V _{CC} @ 5.5 V	_	25	-	
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	_	10	-	0.4
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	_	8.0	-	ns/V
TJ	Junction Temperature (PDIP)			_	140	°C
T _A	Operating Ambient Temperature Range			25	85	°C
I _{OH}	Output Current – HIGH			_	-24	mA
I _{OL}	Output Current – LOW		_	_	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- V_{in} from 30% to 70% V_{CC}; see individual Data Sheets for devices that differ from the typical input rise and fall times.
 V_{in} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74.	74AC 74AC T _A = +25°C T _A = -40°C to +85°C			
Symbol	Parameter	V _{CC} (V)	T _A = -			Unit	Conditions
		(-,	Тур	G	uaranteed Limits		
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	Ι _{ΟUT} = 50 μΑ
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	* V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
I _{OLD}	†Minimum Dynamic	5.5	_	_	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	4.0	40	μΑ	$V_{IN} = V_{CC}$ or GND

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V.

AC CHARACTERISTICS

				74AC		74	AC	
Symbol	Parameter	V _{CC} *			50 pF	$T_A = -40^{\circ}C \text{ to } +8$	Unit	
		(',	Min	Тур	Max	Min	Max	
t _{PZL}	Propagation Delay Output Enable	3.3	1.5	-	8.0	1.0	9.0	ns
		5.0	1.5	-	6.0	1.0	6.5	
t _{PLZ}	Propagation Delay Output Enable	3.3	1.5	-	8.0	1.0	9.0	ns
		5.0	1.5	_	6.0	1.0	6.5	

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			74	СТ	74ACT		
Symbol	Parameter	V _{CC} (V)	T _A = -	$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$		Unit	Conditions
		(-,	Тур	G	uaranteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5	_ _	0.36 0.36	0.44 0.44	0.44	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ I_{OH} 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
Δl _{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$
I _{OLD} I _{OHD}	†Minimum Dynamic Output Current	5.5 5.5	- -	- -	75 –75	mA mA	V _{OLD} = 1.65 V Max V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	_	4.0	40	μΑ	$V_{IN} = V_{CC}$ or GND

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
*All outputs loaded; thresholds on input associated with output under test.
†Maximum test duration 2.0 ms, one output loaded at a time.

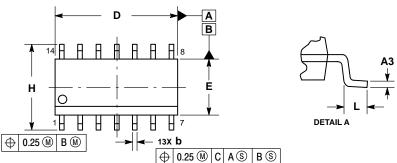
AC CHARACTERISTICS

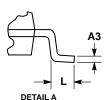
			74ACT		74A			
Symbol	Parameter	V _{CC} * (V)	T _A = +	25°C C _L =	50 pF	T _A = -40°C to +8	35°C C _L = 50 pF	Unit
		(-,	Min	Тур	Max	Min	Max	
t _{PZL}	Propagation Delay Output Enable	5.0	1.5	_	8.0	1.0	8.5	ns
t _{PLZ}	Propagation Delay Output Enable	5.0	1.5	-	8.5	1.0	9.0	ns

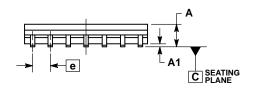
^{*}Voltage Range 5.0 V is 5.0 V ±0.5 V.

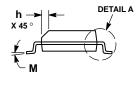
CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0 \text{ V}$
C_{PD}	Power Dissipation Capacitance	30	pF	$V_{CC} = 5.0 \text{ V}$

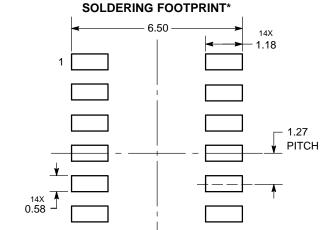

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74AC05DG	SOIC-14 (Pb-Free)	55 Units / Rail
MC74AC05DR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
MC74ACT05DG	SOIC-14 (Pb-Free)	55 Units / Rail
MC74ACT05DR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
MC74ACT05DTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

SOIC-14 NB CASE 751A-03 ISSUE K

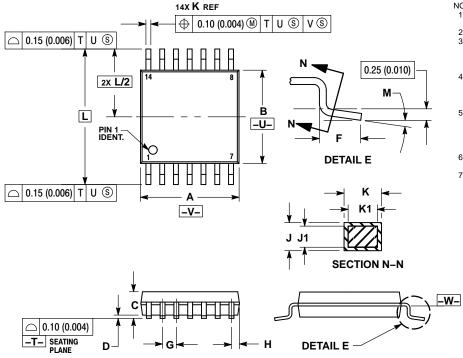

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MANUAL MAN
- MAXIMUM MATERIAL CONDITION.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
А3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050 BSC	
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7°



DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

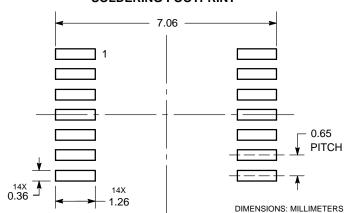
TSSOP-14 CASE 948G **ISSUE B**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.


 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.06) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25
- OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION, ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
 EXCESS OF THE K DIMENSION AT MAXIMUM
 MATERIAL CONDITION.
 TERMINAL NUMBERS ARE SHOWN FOR
- TERMINAL NUMBERS ARE SHOWN FOR
- TERMINAL NOMBERS ARE SHOWN FOR REFERENCE ONLY.

 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40 BSC		0.252 BSC		
М	0 °	8 °	0 °	8 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor Po. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC74AC05DG MC74AC05DR2G MC74AC05MELG MC74AC05NG MC74ACT05DG MC74ACT05DR2G MC74ACT05DTR2G MC74ACT05MELG