Surface Mount TransZorb ${ }^{\circledR}$ Transient Voltage Suppressors

FEATURES

- Low profile package
- Ideal for automated placement
- Glass passivated chip junction
- Available in uni-directional and bi-directional
- Excellent clamping capability
- Very fast response time
- Low incremental surge resistance
- Meets MSL level 1, per J-STD-020, LF maximum peak of $260{ }^{\circ} \mathrm{C}$
- AEC-Q101 qualified
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

PRIMARY CHARACTERISTICS	
V_{BR} uni-directional	6.40 V to 231 V
$\mathrm{~V}_{\mathrm{BR}}$ bi-directional	6.40 V to 231 V
$\mathrm{~V}_{\mathrm{WM}}$	5.0 V to 188 V
$\mathrm{P}_{\mathrm{PPM}}$	1500 W
P_{D}	6.5 W
$\mathrm{I}_{\mathrm{FSM}}$ (uni-directional only)	200 A
$\mathrm{~T}_{\mathrm{J}}$ max.	$150^{\circ} \mathrm{C}$
Polarity	Uni-directional, bi-directional
Package	DO-214AB (SMCJ)

DEVICES FOR BI-DIRECTION APPLICATIONS

For bi-directional devices use CA suffix (e.g. SMCJ188CA). Electrical characteristics apply in both directions.

TYPICAL APPLICATIONS

Use in sensitive electronics protection against voltage transients induced by inductive load switching and lighting on ICs, MOSFET, signal lines of sensor units for consumer, computer, industrial, automotive, and telecommunication.

MECHANICAL DATA

Case: DO-214AB (SMCJ)
Molding compound meets UL 94 V -0 flammability rating Base P/N-E3 - RoHS compliant, commercial grade Base P/NHE3 - RoHS compliant, AEC-Q101 qualified

Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102
E3 suffix meets JESD 201 class 2 whisker test, HE3 suffix meets JESD 201 class 2 whisker test
Polarity: For uni-directional types the band denotes cathode end, no marking on bi-directional types

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)			
PARAMETER	SYMBOL	VALUE	UNIT
Peak pulse power dissipation with a 10/1000 μ s waveform ${ }^{(1)(2)}$	PPPM	1500	W
Peak pulse current with a $10 / 1000 \mu$ s waveform ${ }^{(1)}$	IPPM	See next table	A
Peak forward surge current 8.3 ms single half sine-wave uni-directional only ${ }^{(2)}$	$\mathrm{I}_{\text {FSM }}$	200	A
Power dissipation on infinite heatsink, $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$	P_{D}	6.5	W
Operating junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Notes

${ }^{(1)}$ Non-repetitive current pulse, per fig. 3 and derated above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ per fig. 2.
(2) Mounted on $0.31^{\prime \prime} \times 0.31^{\prime \prime}(8.0 \mathrm{~mm} \times 8.0 \mathrm{~mm})$ copper pads to each terminal

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

DEVICE TYPE MODIFIED "J" BEND LEAD	DEVICE MARKING CODE		BREAKDOWN VOLTAGE $\mathrm{V}_{\mathrm{BR}} \mathrm{AT} \mathrm{I}_{\mathrm{T}}{ }^{(1)}$ (V)		TEST CURRENT I_{T} (mA)	STAND-OFF VOLTAGE $V_{\text {WM }}$ (V)	MAXIMUM REVERSE LEAKAGE AT V_{wm} $\mathrm{I}_{\mathrm{D}}(\mu \mathrm{A})^{(3)}$	MAXIMUM PEAK PULSE SURGE CURRENT $I_{\text {PPM }}(A){ }^{(2)}$	MAXIMUM CLAMPING VOLTAGEAT IPPM $V_{C}(V)$
	UNI	BI	MIN.	MAX.					
${ }^{(+)}$SMCJ5.0A ${ }^{(5)}$	GDE	GDE	6.40	7.07	10	5.0	1000	163.0	9.2
${ }^{(+)}$SMCJ6.0A	GDG	GDG	6.67	7.37	10	6.0	1000	145.6	10.3
${ }^{(+)}$SMCJ6.5A	GDK	BDK	7.22	7.98	10	6.5	500	133.9	11.2
${ }^{(+)}$SMCJ7.0A	GDM	GDM	7.78	8.60	10	7.0	200	125.0	12.0
${ }^{(+)}$SMCJ7.5A	GDP	BDP	8.33	9.21	1.0	7.5	100	116.3	12.9
${ }^{(+)}$SMCJ8.0A	GDR	BDR	8.89	9.83	1.0	8.0	50	110.3	13.6
${ }^{(+)}$SMCJ8.5A	GDT	BDT	9.44	10.4	1.0	8.5	20	104.2	14.4
${ }^{(+)}$SMCJ9.0A	GDV	BDV	10.0	11.1	1.0	9.0	10	97.4	15.4
${ }^{(+)}$SMCJ10A	GDX	BDX	11.1	12.3	1.0	10	5.0	88.2	17.0
${ }^{(+)}$SMCJ11A	GDZ	GDZ	12.2	13.5	1.0	11	5.0	82.4	18.2
${ }^{(+)}$SMCJ12A	GEE	BEE	13.3	14.7	1.0	12	5.0	75.4	19.9
${ }^{(+)}$SMCJ13A	GEG	GEG	14.4	15.9	1.0	13	1.0	69.8	21.5
${ }^{(+)}$SMCJ14A	GEK	BEK	15.6	17.2	1.0	14	1.0	64.7	23.2
${ }^{(+)}$SMCJ15A	GEM	BEM	16.7	18.5	1.0	15	1.0	61.5	24.4
${ }^{(+) S M C J 16 A ~}$	GEP	GEP	17.8	19.7	1.0	16	1.0	57.7	26.0
${ }^{(+)}$SMCJ17A	GER	GER	18.9	20.9	1.0	17	1.0	54.3	27.6
${ }^{(+)}$SMCJ18A	GET	BET	20.0	22.1	1.0	18	1.0	51.4	29.2
${ }^{(+)}$SMCJ20A	GEV	BEV	22.2	24.5	1.0	20	1.0	46.3	32.4
${ }^{(+)} \mathrm{SMCJ} 22 \mathrm{~A}$	GEX	BEX	24.4	26.9	1.0	22	1.0	42.3	35.5
${ }^{(+)}$SMCJ24A	GEZ	BEZ	26.7	29.5	1.0	24	1.0	38.6	38.9
${ }^{(+)}$SMCJ26A	GFE	BFE	28.9	31.9	1.0	26	1.0	35.6	42.1
${ }^{(+)}$SMCJ28A	GFG	BFG	31.1	34.4	1.0	28	1.0	33.0	45.4
${ }^{(+)}$SMCJ30A	GFK	BFK	33.3	36.8	1.0	30	1.0	31.0	48.4
${ }^{(+)}$SMCJ33A	GFM	BFM	36.7	40.6	1.0	33	1.0	28.1	53.3
${ }^{(+)}$SMCJ36A	GFP	BFP	40.0	44.2	1.0	36	1.0	25.8	58.1
${ }^{(+)}$SMCJ40A	GFR	BFR	44.4	49.1	1.0	40	1.0	23.3	64.5
${ }^{(+)}$SMCJ43A	GFT	BFT	47.8	52.8	1.0	43	1.0	21.6	69.4
${ }^{(+)}$SMCJ45A	GFV	GFV	50.0	55.3	1.0	45	1.0	20.6	72.7
${ }^{(+)}$SMCJ48A	GFX	GFX	53.3	58.9	1.0	48	1.0	19.4	77.4
${ }^{(+)}$SMCJ51A	GFZ	GFZ	56.7	62.7	1.0	51	1.0	18.2	82.4
${ }^{(+)}$SMCJ54A	GGE	GGE	60.0	66.3	1.0	54	1.0	17.2	87.1
${ }^{(+)}$SMCJ58A	GGG	GGG	64.4	71.2	1.0	58	1.0	16.0	93.6
${ }^{(+)}$SMCJ60A	GGK	GGK	66.7	73.7	1.0	60	1.0	15.5	96.8
${ }^{(+)}$SMCJ64A	GGM	GGM	71.1	78.6	1.0	64	1.0	14.6	103
${ }^{(+)}$SMCJ70A	GGP	GGP	77.8	86.0	1.0	70	1.0	13.3	113
${ }^{(+)}$SMCJ75A	GGR	GGR	83.3	92.1	1.0	75	1.0	12.4	121
${ }^{(+)}$SMCJ78A	GGT	GGT	86.7	95.8	1.0	78	1.0	11.9	126
${ }^{(+)}$SMCJ85A	GGV	GGV	94.4	104	1.0	85	1.0	10.9	137
${ }^{(+)}$SMCJ90A	GGX	GGX	100	111	1.0	90	1.0	10.3	146
${ }^{(+)}$SMCJ100A	GGZ	GGZ	111	123	1.0	100	1.0	9.3	162
${ }^{(+)}$SMCJ110A	GHE	GHE	122	135	1.0	110	1.0	8.5	177
${ }^{(+)}$SMCJ120A	GHG	GHG	133	147	1.0	120	1.0	7.8	193
${ }^{(+)}$SMCJ130A	GHK	GHK	144	159	1.0	130	1.0	7.2	209
(+)SMCJ150A	GHM	GHM	167	185	1.0	150	1.0	6.2	243
${ }^{(+)}$SMCJ160A	GHP	GHP	178	197	1.0	160	1.0	5.8	259
${ }^{(+)}$SMCJ170A	GHR	GHR	189	209	1.0	170	1.0	5.5	275
SMCJ188A	GHS	GHS	209	231	1.0	188	1.0	4.6	328

Notes

${ }^{(1)}$ Pulse test: $\mathrm{t}_{\mathrm{p}} \leq 50 \mathrm{~ms}$
(2) Surge current waveform per fig. 3 and derate per fig. 2
${ }^{(3)}$ For bi-directional types having V_{WM} of 10 V and less, the I_{D} limit is doubled
${ }^{(4)}$ All terms and symbols are consistent with ANSI/IEEE C62.35
${ }^{(5)}$ For the bi-directional SMCJ5.0CA, the maximum V_{BR} is 7.25 V
(6) $\mathrm{V}_{\mathrm{F}}=3.5 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~A}$ (uni-directional only)
${ }^{(+)}$Underwriters laboratory recognition for the classification of protectors (QVGQ2) under the UL standard for safety 497B and file number E136766 for both uni-directional and bi-directional devices

SMCJ5.0A thru SMCJ188CA
www.vishay.com
Vishay General Semiconductor

THERMAL CHARACTERISTICS $\left(T_{\mathbf{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)			
PARAMETER	SYMBOL	VALUE	UNIT
Typical thermal resistance, junction to ambient air ${ }^{(1)}$	$R_{\theta J A}$	75	
Typical thermal resistance, junction to lead	$\mathrm{R}_{\theta \mathrm{JL}}$	15	

Note

${ }^{(1)}$ Mounted on minimum recommended pad layout

ORDERING INFORMATION (Example)					
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE	
SMCJ5.0A-E3/57T	0.211	57 T	850	$7{ }^{\prime \prime}$ diameter plastic tape and reel	
SMCJ5.0A-E3/9AT	0.211	$9 A T$	3500	13 " diameter plastic tape and reel	
SMCJ5.0AHE3/57T ${ }^{(1)}$	0.211	57 T	850	$7^{\prime \prime}$ diameter plastic tape and reel	
SMCJ5.0AHE3/9AT ${ }^{(1)}$	0.211	$9 A T$	3500	13 " diameter plastic tape and reel	

Note

${ }^{(1)}$ AEC-Q101 qualified
RATINGS AND CHARACTERISTICS CURVES $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Fig. 1 - Peak Pulse Power Rating Curve

Fig. 2 - Pulse Power or Current vs. Initial Junction Temperature

Fig. 3 - Pulse Waveform

Fig. 4 - Typical Junction Capacitance Uni-Directional

Fig. 5 - Typical Transient Thermal Impedance

Vishay General Semiconductor

Fig. 6 - Maximum Non-Repetitive Peak Forward Surge Current Uni-Directional Use Only

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

DO-214AB (SMC J-Bend)

Mounting Pad Layout

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Vishay:
SMCJ100A-E3/1T SMCJ100CA/1T SMCJ100CA-E3/1T SMCJ100-E3/1T SMCJ10A/1T SMCJ10A-E3/1T
SMCJ10CA/1T SMCJ10CA-E3/1T SMCJ10-E3/1T SMCJ11/1T SMCJ110A-E3/1T SMCJ110CA-E3/1T SMCJ11A-
E3/1T SMCJ11CA-E3/1T SMCJ11-E3/1T SMCJ120A-E3/1T SMCJ120CA-E3/1T SMCJ12A-E3/1T SMCJ12CA/1T
SMCJ12CA-E3/1T SMCJ12C-E3/1T SMCJ12-E3/1T SMCJ130A/1T SMCJ130A-E3/1T SMCJ130CA-E3/1T
SMCJ130-E3/1T SMCJ13A-E3/1T SMCJ13CA-E3/1T SMCJ14A-E3/1T SMCJ14CA-E3/1T SMCJ150A-E3/1T
SMCJ150CA/1T SMCJ150CA-E3/1T SMCJ15A/1T SMCJ15A-E3/1T SMCJ15C/1T SMCJ15CA/1T SMCJ15CA-
E3/1T SMCJ15C-E3/1T SMCJ160A/1T SMCJ160A-E3/1T SMCJ160CA-E3/1T SMCJ16A-E3/1T SMCJ16CA/1T
SMCJ16CA-E3/1T SMCJ16C-E3/1T SMCJ16-E3/1T SMCJ170A-E3/1T SMCJ170CA/1T SMCJ170CA-E3/1T
SMCJ170-E3/1T SMCJ17A-E3/1T SMCJ17CA-E3/1T SMCJ18/1T SMCJ188CA-E3/1T SMCJ18A-E3/1T
SMCJ18CA/1T SMCJ18CA/9AT SMCJ18CA-E3/1T SMCJ18-E3/1T SMCJ20A/1T SMCJ20A-E3/1T SMCJ20CA/1T
SMCJ20CA-E3/1T SMCJ22A-E3/1T SMCJ22CA-E3/1T SMCJ22C-E3/1T SMCJ22-E3/1T SMCJ24A/1T SMCJ24A-
E3/1T SMCJ24CA/1T SMCJ24CA-E3/1T SMCJ24C-E3/1T SMCJ24-E3/1T SMCJ26A-E3/1T SMCJ26CA-E3/1T
SMCJ26C-E3/1T SMCJ26-E3/1T SMCJ28A-E3/1T SMCJ28CA-E3/1T SMCJ28-E3/1T SMCJ30A-E3/1T
SMCJ30CA/1T SMCJ30CA-E3/1T SMCJ30-E3/1T SMCJ33/1T SMCJ33A-E3/1T SMCJ33C/1T SMCJ33CA/1T
SMCJ33CA-E3/1T SMCJ33C-E3/1T SMCJ33-E3/1T SMCJ36A/1T SMCJ36A-E3/1T SMCJ36CA/1T SMCJ36CA-
E3/1T SMCJ36C-E3/1T SMCJ36-E3/1T SMCJ40A/1T SMCJ40A-E3/1T

