256 k SRAM (32-kword \times 8-bit)

HITACHI

ADE-203-084H (Z) Rev. 8.0 Nov. 1997

Features

• Low voltage operation SRAM

Operating Supply Voltage: 3.0 V to 3.6 V

• 0.8 μm Hi-CMOS process

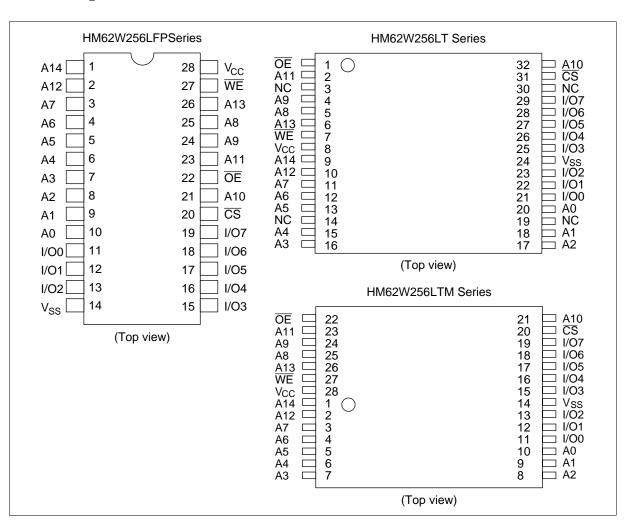
· High speed

Access time: 55/70/85 ns (max)

Low power

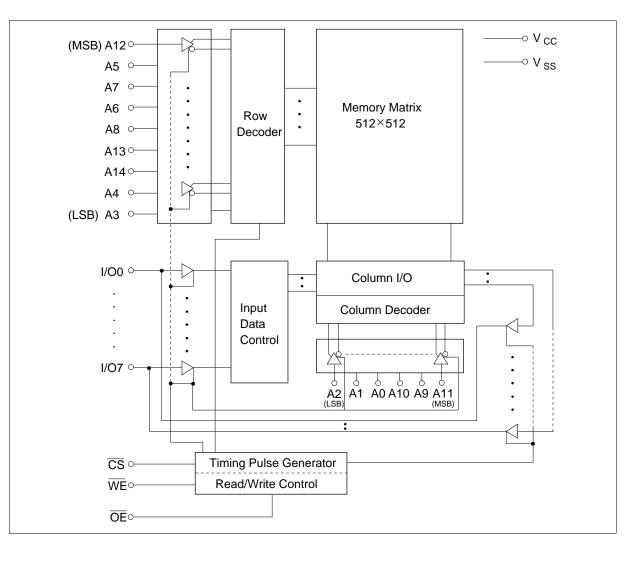
Standby: 0.33 μW (typ)

Completely static memory
 No clock or timing strobe required


• Directly LVTTL compatible: All inputs and outputs

Ordering Information

Type No.	Access Time	Package
HM62W256LFP-7T	70 ns	450 mil 28-pin plastic SOP (FP-28DA)
HM62W256LFP-5SLT	55 ns	 -
HM62W256LFP-7SLT	70 ns	
HM62W256LFP-8SLT	85 ns	
HM62W256LFP-7ULT	70 ns	
HM62W256LT-7	70 ns	8 mm × 14 mm 32-pin TSOP (normal type) (TFP-32DA)
HM62W256LT-7SL	70 ns	
HM62W256LT-8SL	85 ns	
HM62W256LTM-7	70 ns	8 mm × 13.4 mm 28-pin TSOP (normal type) (TFP-28DA)
HM62W256LTM-5SL	55 ns	
HM62W256LTM-7SL	70 ns	
HM62W256LTM-8SL	85 ns	
HM62W256LTM-7UL	70 ns	


Pin Arrangement

Pin Description

Pin name	Function
A0 – A14	Address inputs
I/O0 – I/O7	Input/output
CS	Chip select
WE	Write enable
ŌE	Output enable
NC	No connection
V _{cc}	Power supply
V _{SS}	Ground

Block Diagram

Function Table

WE	CS	ŌĒ	Mode	V _{cc} Current	I/O Pin	Ref. Cycle
X	Н	Х	Not selected	I _{SB} , I _{SB1}	High-Z	_
Н	L	Н	Output disable	I _{cc}	High-Z	_
Н	L	L	Read	I _{cc}	Dout	Read cycle (1)–(3)
L	L	Н	Write	I _{cc}	Din	Write cycle (1)
L	L	L	Write	I _{cc}	Din	Write cycle (2)

Note: X: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power supply voltage 1	V _{cc}	-0.5 to 4.6	V
Terminal voltage*1	V _T	-0.5^{*2} to $V_{CC} + 0.5^{*3}$	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to + 70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	-10 to +85	°C

Notes: 1. Relative to V_{ss}

2. V_T min: -3.0 V for pulse half-width ≤ 50 ns

3. Maximum voltage is 4.6 V

Recommended DC Operating Conditions (Ta = $0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{cc}	3.0	3.3	3.6	V
	V _{SS}	0	0	0	V
Input high(logic 1) voltage	V_{IH}	2.0	_	V _{cc} +0.3	V
Input low(logic 0) voltage	V _{IL}	-0.3 *1	_	0.8	V

Note: 1. V_{IL} min: -3.0 V for pulse half-width ≤ 50 ns

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 3.3 V \pm 0.3 V, V_{SS} = 0 V)

Parameter		Symbol	WIIN	Typ [™]	Max	Unit	Test conditions
Input leakage curi	rent	I _{LI}	_	_	1	μΑ	V _{ss} Vin V _{cc}
Output leakage cu	urrent	I _{LO}	_	_	1	μΑ	$\overline{\text{CS}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{IH}}$ or $\overline{\text{WE}} = \text{V}_{\text{IL}}, \text{V}_{\text{SS}} \text{ V}_{\text{I/O}} \text{ V}_{\text{CC}}$
Operating power s (DC)	supply current	I _{CCDC1}	_	_	15	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}$, others = $\text{V}_{\text{IH}}/\text{V}_{\text{IL}}$ $\text{I}_{\text{I/O}} = 0 \text{ mA}$
		I _{CCDC2}	_	_	10	mA	$\begin{split} \overline{CS} &\leq 0.2 \text{ V, V}_{\text{IH}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V,} \\ \text{V}_{\text{IL}} &\leq 0.2 \text{ V, I}_{\text{I/O}} = 0 \text{ mA} \end{split}$
Average operating power supply current	HM62W256-5	I _{CCAC1}	_	_	30	mA	$\frac{\text{min cycle, duty} = 100 \%,}{\text{CS} = \text{V}_{\text{IL}}, \text{ others} = \text{V}_{\text{IH}}/\text{V}_{\text{IL}}}{\text{I}_{\text{I/O}} = 0 \text{ mA}}$
	HM62W256-7	I _{CCAC1}	_	_	30		
	HM62W256-8	I _{CCAC1}	_	_	27	_	
		I _{CCAC2}	_	_	15	mA	$ \begin{array}{c} \text{Cycle time} \underline{1} \; \mu \text{s, duty} = 100\% \\ I_{\text{I/O}} = 0 \; \text{mA, } \overline{\text{CS}} \leq 0.2 \; \text{V,} \\ V_{\text{IH}} \geq V_{\text{CC}} - 0.2 \; \text{V, V}_{\text{IL}} \leq 0.2 \; \text{V} \\ \end{array} $
Standby powr sup	ply current	I _{SB}	_	0.1	1	mA	CS = V _{IH}
		I _{SB1}	_	0.1	50	μA	$Vin \ge 0 \text{ V}, \overline{CS} \ge V_{CC} - 0.2 \text{ V},$
			_	0.1	10*2	_	
			_	0.1	5*3	_	
Output low voltage		V _{OL}	_	_	0.4	V	I _{OL} = 2.0 mA
			_	_	0.2	V	Ι _{οL} = 100 μΑ
Output high voltage		V _{OH}	V _{cc} - 0.2	2 —	_	V	I _{OH} = -100 μA
			2.4	_	_	V	$I_{OH} = -2.0 \text{ mA}$

Notes: 1. Typical values are at $V_{cc} = 3.3 \text{ V}$, $Ta = +25^{\circ}\text{C}$ and not guaranteed.

2. This characteristic is guaranteed only for L-SL version.

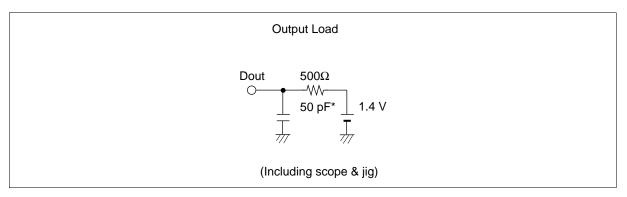
3. This characteristic is guaranteed only for L-UL version.

Capacitance (Ta = 25°C, f = 1.0 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance*1	Cin	_	_	5	pF	Vin = 0 V
Input/output capacitance*1	C _{I/O}	_	_	8	pF	V _{I/O} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, unless otherwise noted.)


Test Conditions

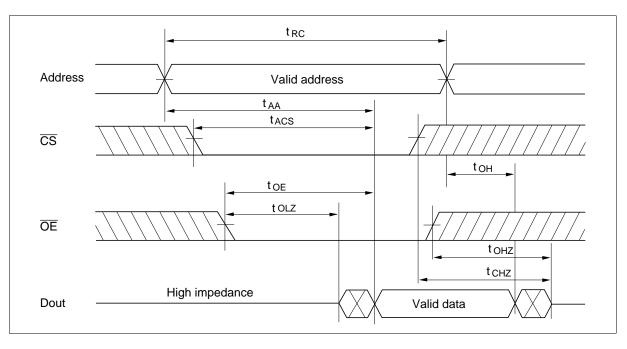
• Input pulse levels: 0.4 V to 2.4 V

Input rise and fall time: 5 nsInput reference level: 1.4 V

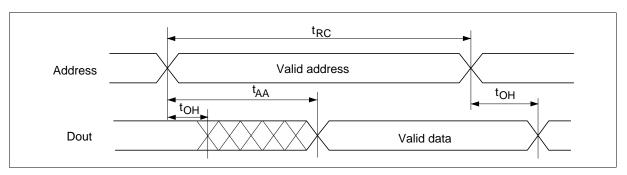
• Output timing reference level: HM62W256-5: 1.4 V

HM62W256-7/8: 0.8 V/2.0 V

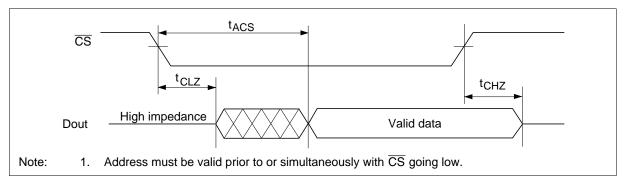
Read Cycle


		HIVI62	W256						
		-5		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55	_	70	_	85	_	ns	
Address access time	t _{AA}	_	55	_	70	_	85	ns	
Chip select access time	t _{ACS}	_	55	_	70	_	85	ns	
Output enable to output valid	t _{OE}	_	30	_	35	_	45	ns	
Chip selection to output in low-Z	t _{CLZ}	5	_	10	_	10	_	ns	2
Output enable to output in low-Z	t _{OLZ}	5	_	5	_	5	_	ns	2
Chip deselection to output in high-Z	t _{CHZ}	0	20	0	25	0	30	ns	1, 2
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	0	30	ns	1, 2
Output hold from address change	t _{oH}	10	_	10	_	10	_	ns	

LIMESWARE


Notes: 1. t_{CHZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

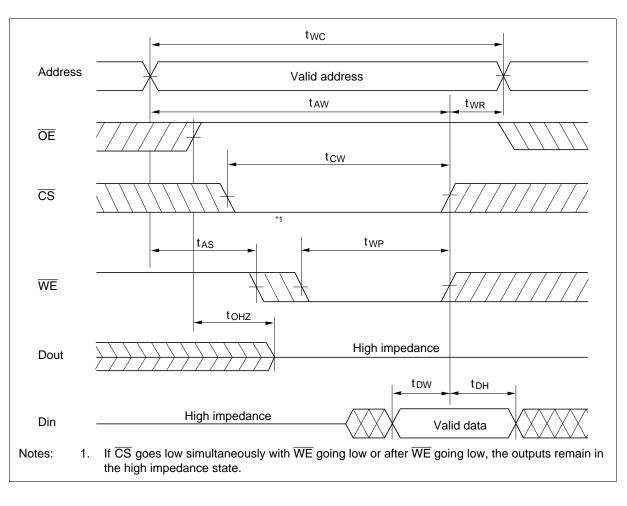
2. This parameter is sampled and not 100% tested.


Read Timing Waveform (1) $(\overline{WE} = V_{IH})$

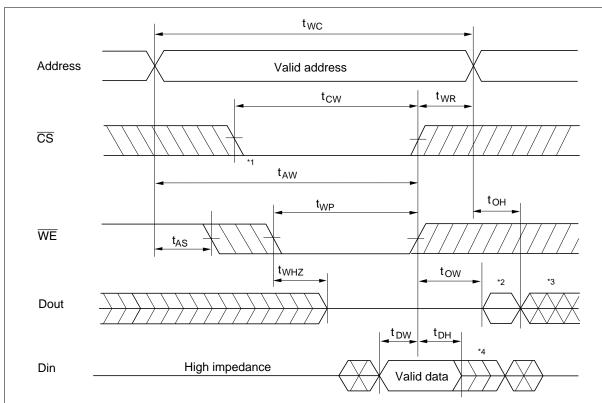
Read Timing Waveform (2) $(\overline{WE} = V_{IH}, \overline{CS} = V_{IL}, \overline{OE} = V_{IL})$

Read Timing Waveform (3) $(\overline{WE} = V_{IH}, \overline{OE} = V_{IL})^{*1}$

Write Cycle


		25	

		-5		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{wc}	55	_	70	_	85	_	ns	
Chip selection to end of write	t _{cw}	45	_	60	_	75	_	ns	4
Address setup time	t _{AS}	0	_	0	_	0	_	ns	5
Address valid to end of write	t _{AW}	45	_	60	_	75	_	ns	
Write pulse width	t _{wP}	40	_	50	_	55	_	ns	3, 8
Write recovery time	t _{wR}	0	_	0	_	0	_	ns	6
Write to output in high-Z	t_{WHZ}	0	25	0	25	0	30	ns	1, 2, 7
Data to write time overlap	t _{DW}	30	_	30	_	35	_	ns	
Data hold from write time	t _{DH}	0	_	0	_	0	_	ns	
Output active from end of write	t _{ow}	10	_	10	_	10	_	ns	2
Output disable to output in high-Z	t _{OHZ}	0	20	0	25	0	30	ns	1, 2, 7


Notes: 1. t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

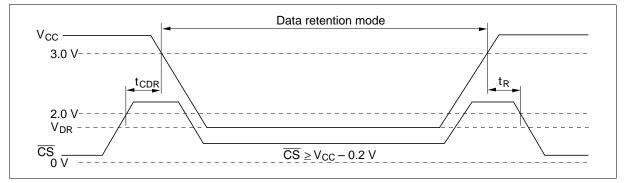
- 2. This parameter is samples and not 100% tested.
- 3. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and a low \overline{WE} . A write begins at the later transition of \overline{CS} going low or \overline{WE} going low. A write ends at the earlier transition of \overline{CS} going high or \overline{WE} going high. t_{WP} is measured from the beginning of write to the end of write.
- 4. t_{cw} is measured from \overline{CS} going low to the end of write.
- 5. t_{AS} is measured from the address valid to the beginning of write.
- 6. t_{WR} is measured from the earlier of \overline{WE} or \overline{CS} going high to the end of write cycle.
- 7. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
- 8. In the write cycle with \overline{OE} low fixed, t_{WP} must satisfy the following equation to avoid a problem of data bus contention, t_{WP} t_{WHZ} max + t_{DW} min.

Write Timing Waveform (1) (OE Clock)

Write Timing Waveform (2) (OE Low Fixed)

Notes:

- 1. If $\overline{\text{CS}}$ goes low simultaneously with $\overline{\text{WE}}$ going low or after $\overline{\text{WE}}$ going low, the outputs remain in the high impedance state.
- 2. Dout is the same phase of the write data of this write cycle.
- 3. Dout is the read data of next address.
- 4. If $\overline{\text{CS}}$ is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the output must not be applied to them.

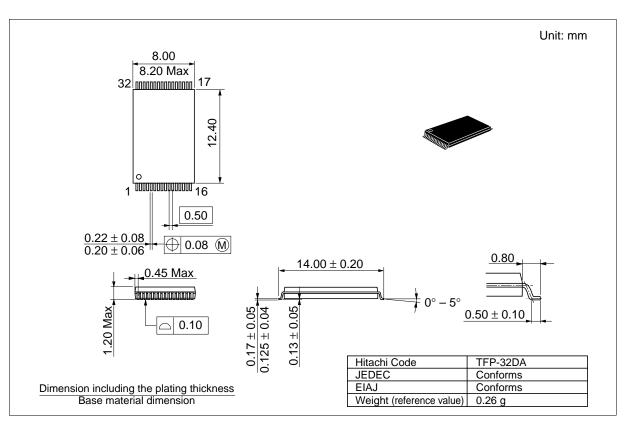

Low V_{CC} **Data Retention Characteristics** ($Ta = 0 \text{ to } +70^{\circ}\text{C}$)

Parameter	Symbol	Min	Typ*1	Max	Unit	Test conditions ^{*6}
V _{cc} for data retention	V_{DR}	2.0	_	3.6	V	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V, Vin} \ge 0 \text{ V}$
Data retention current	I _{CCDR}	_	0.05	30*2	μΑ	$\frac{V_{CC} = 3.0 \text{ V, Vin} \ge 0 \text{ V}}{CS} \ge V_{CC} - 0.2 \text{ V,}$
		_	0.05	8*3		
		_	0.05	3*4		
Chip deselect to data retention time	t_{CDR}	0	_	_	ns	See retention waveform
Operation recovery time	t_R	$t_{\text{RC}}^{5}}$	_	_	ns	-

Notes: 1. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = 25^{\circ}\text{C}$ and not guaranteed.

- 2. $10 \mu A \text{ max.}$ at $Ta = 0 \text{ to } +40 ^{\circ} C$.
- 3. This characteristics guaranteed for only L-SL version. 2.5 μ A max. at Ta = 0 to +40°C.
- 4. This characteristics guaranteed for only L-UL version. 0.6 μ A max. at Ta = 0 to +40°C.
- 5. t_{RC} = read cycle time.
- 6. $\overline{\text{CS}}$ controls address buffer, $\overline{\text{WE}}$ buffer, $\overline{\text{OE}}$ buffer, and Din buffer. If $\overline{\text{CS}}$ controls data retention mode, other input levels (address, $\overline{\text{WE}}$, $\overline{\text{OE}}$, I/O) can be in the high impedance state.

Low V_{CC} Data Retention Timing Waveform


Package Dimensions

HM62W256LFP Series (FP-28DA)

Package Dimensions

HM62W256LT Series (TFP-32DA)

Package Dimensions

HM62W256LTM Series (TFP-28DA)

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.

Semiconductor & IC Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

For further information write to:

Hitachi Semiconductor (America) Inc. 2000 Sierra Point Parkway Brisbane, CA. 94005-1897 U S A Tel: 800-285-1601

Tel: 800-285-1601 Fax:303-297-0447 Hitachi Europe GmbH Continental Europe Dornacher Straße 3 D-85622 Feldkirchen München Tel: 089-9 91 80-0 Fax: 089-9 29 30-00

Electronic Components Div. Northern Europe Headquarters Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA United Kingdom Tel: 01628-585000 Fax: 01628-585160

Hitachi Europe Ltd.

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia (Hong Kong) Ltd. Unit 706, North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel: 27359218

Fax: 27306071

Copyright © Hitachi, Ltd., 1997. All rights reserved. Printed in Japan.

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
0.0	Mar. 27, 1992	Initial issue	Y. Saito	Y. Kawashima
1.0	Dec. 20, 1992	Full specification	Y. Saito	Y. Kawashima
2.0	Feb. 25, 1993	Addition of HM62W256LT Series	Y. Saito	Y. Kawashima
3.0	Apr. 1, 1993	Operation Supply Voltage: $3.0V - 3.6 V$ to Single $3.3 V$ Supply $f = 2 \text{ MHz}$ to $f = 1 \text{ MHz}$ Function Table Not selected to Standby Absolute Maximum Rating Relative to V_{cc} to Relative to V_{ss} DC Characteristics I_{ccac} Cycle time: 500 ns to 1 μ s Low V_{cc} Data Retantion Timing Waveforms Change of Notes	K. Imato	T. Matumoto
4.0	Sep. 10, 1993	Absolute Maximum Rating $V_T = -0.5$ to $V_{CC} + 0.5$ V to -0.5 to $V_{CC} + 0.3$ V DC Characteristics I_{CCDC1} (max): 5.0 mA to 15 mA I_{CCDC2} (max): 2.5 mA to 10 mA AC Characteristics tDW (min): 30/40 ns to 30/35 ns Addition of notes for Low V_{CC} Data retantion Timing Waveform	Y. Saito	K. Yoshizaki
5.0	Mar. 18, 1994	DC Characteristics I _{CCAC2} (max): 10 mA to 15 mA	Y. Saito	K. Yashizaki
6.0	Oct. 31, 1994	Addition of HM62W256LTM Series (TFP-28DA) Addition of Block Diagram AC Characteristics Addition of note 12 Low V_{CC} data retention characteristics I_{CCDR} (typ): —/— μ A to 0.2/0.2 μ A Note 2: 20 μ A max at Ta = 0 to 40°C to 10 μ A max at Ta = 0 to 40°C	Y. Saito	K. Yoshizaki
7.0	Jun. 19, 1995	Feature Low power (standby): $0.66 \mu W$ to $0.33 \mu W$ Deletion of HM62W256LFP-8T Deletion of HM62W256LT-8 Deletion of HM62W256LTM-8 Addition of HM62W256LFP-5SLT/7ULT Addition of HM62W256LTM-5SLT/7ULT Chage of Block Diagram Absolute maximum Ratings Terminal voltage V_T : -0.5 to V_{CC} + 0.3 V to -0.5 to V_{CC} + 0.5 V	M. Higuchi	K. Yoshizaki

Revision Record (cont)

Rev.	Date	Contents of Modification	Drawn by	Approved by
7.0	Jun. 19, 1995	DC Characteristics Addition of note 3. I_{CCAC1} (max): 30/27 mA to 30/30/27 mA I_{SB1} (typ): 0.2/0.2/ μA to 0.1/0.1/0.1 μA I_{SB1} (max): 50/10 μA to 50/10/5 μA Chapacitance Cin (max): 8 pF to 5 pF $C_{I/O}$ (max): 10 pF to 8 pF AC Characteristics Addition of Output timing reference level: HM62W256-5: 1.4 V Change order of notes I_{RC} (min): 70/85 ns to 55/70/85 ns I_{AA} (max): 70/85 ns to 55/70/85 ns I_{ACS} (max): 70/85 ns to 55/70/85 ns I_{CLZ} (min): 10/10 ns to 5/10/10 ns I_{CLZ} (min): 10/10 ns to 5/10/10 ns I_{CLZ} (min): 5/5 ns to 5/5/5 ns I_{CHZ} (max): 25/30 ns to 20/25/30 ns I_{OHZ} (max): 25/30 ns to 20/25/30 ns I_{CHZ} (min): 10/10 ns to 10/10/10 ns I_{CM} (min): 70/85 ns to 45/60/75 ns I_{CM} (min): 60/75 ns to 45/60/75 ns I_{CM} (min): 50/55 ns to 40/50/55 ns I_{CM} (min): 30/35 ns to 30/30/35 ns I_{CM} (min): 10/10 ns to 10/10/10 ns I_{CCDR} (min): 10/10 ns to 10/10/10 ns	M. Higuchi	K. Yoshizaki
8.0	Nov. 1997	Change of Format Change of Subtitle		