K9XXG08UXM

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,

 AND IS SUBJECT TO CHANGE WITHOUT NOTICE.NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED

ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure couldresult in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.
[^0]
Document Title

2G x 8 Bit/ 4G x 8 Bit/ 8G x 8 Bit NAND Flash Memory

Revision History

Revision No	History	Draft Date	Remark
0.0	1. Initial issue	April 12th 2006	Advance
0.1	1. Add read status 2 command F1h 2. Add 2-plane read operation 3. Add address map (Table2) 4. Remove adjacent page relationship table 5. Modify figure of 2-plane copy-back program with random data input 6. Modify figure of $R p$ vs $t r$,tf \& Rp vs ibusy 7. Data retention $5 y e a r s ~->~ 10$ years 8. Remove K9LBG08U1M 9. Modify figure of 2-plane page program 10. Add nWP timing guide 11. Add 2-plane read for copy-back operation 12. Add 2-plane random data out operation 13. Modify command table and note 14. Modify invalid block definition 15. Add program operation with 2 KB data loading timing guide 16. tRLOH is valid when frequency is higher than 20 MHz . tRHOH starts to be valid when frequency is lower than 20 MHz . -> tRLOH is valid when frequency is higher than 33 MHz . tRHOH starts to be valid when frequency is lower than 33 MHz .	Sep. 21th 2006	Advance
0.2	1. Add WELP package 2. Chip address is added 3. Chip2 status is added 4. Interleave operation is added 5. Address map is added 6. DSP characteristics are added 7. Endurance is changed ($10 \mathrm{~K}->5 \mathrm{~K}$)	Dec. 22h 2006	Preliminary
0.3	1. Interleave read to page program timing is added 2. Interleave copy-back program timing is added 3. ID cycle is changed	Jan. 4th 2007	Preliminary
0.4	1. WELP package dimension is changed 2. Endurance is changed ($5 \mathrm{~K}->$ TBD)	Jan. 12th 2007	Preliminary
0.5	1. Standby current is corrected 2. Random data output for copy-back is added 3. Max. Icc is changed ($30 \mathrm{~mA}->35 \mathrm{~mA}$)	Feb. 12th 2007	Preliminary
0.6	1. Interleave two plane copy-back program timing is added 2. LGA QDP is added 3. Max. leakage current is corrected $(10 \mu \mathrm{~A}->20 \mu \mathrm{~A})$ 4. tCSD is changed ($10 \mathrm{~ns}->0 \mathrm{~ns}$)	May 18th 2008	Final

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have any questions, please contact the SAMSUNG branch office near your office.

Document Title

2G x 8 Bit/ 4G x 8 Bit/ 8G x 8 Bit NAND Flash Memory

Revision History

Revision No	$\underline{\text { History }}$	Draft Date	Remark
1.0	1. WELP-DSP dimension is changed 2. Max. bad block number is changed. (K9LBGO8UOM: max. 200ea -> max. 120ea)	Dec. 11th 2007 Final	
1.1	1. 14×18 LGA ODP package is added.	Mar. 10th 2008 Final	
1.2	1. LGA ODP part number is fixed.	Apr. 7th 2008	

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have any questions, please contact the SAMSUNG branch office near your office.

4G / 8G / 16G x 8 Bit NAND Flash Memory

PRODUCT LIST

Part Number	Vcc Range	Organization	PKG Type
K9LBG08U0M-P	$2.7 \mathrm{~V} \sim 3.6 \mathrm{~V}$	X8	TSOPI
K9HCG08U1M-P			
K9HCG08U1M-I			52TLGA
K9MDG08U5M-P			TSOP1-DSP
K9MDG08U5M-Z			WELP-DSP
K9PDG08U5M-L			52LLGA(14x18)

FEATURES

- Voltage Supply : 2.7 V ~ 3.6 V
- Organization
- Memory Cell Array : $(2 G+64 M) \times 8$ bit
- Data Register : $(4 \mathrm{~K}+128) \times 8 \mathrm{bit}$
- Automatic Program and Erase
- Page Program : (4K + 128)Byte
- Block Erase : $(512 \mathrm{~K}+16 \mathrm{~K})$ Byte
- Page Read Operation
- Page Size : (4K + 128)Byte
- Random Read: 60 $\mu \mathrm{s}($ Max.)
- Serial Access : 25ns(Min.)
*K9XDG08U5M: 50ns(Min.)
- Memory Cell : 2bit / Memory Cell
- Fast Write Cycle Time
- Program time : $800 \mu \mathrm{~s}($ Typ.)
- Block Erase Time : 1.5ms(Typ.)
- Command/Address/Data Multiplexed I/O Port
- Hardware Data Protection
- Program/Erase Lockout During Power Transitions
- Reliable CMOS Floating-Gate Technology
- Endurance : TBD(with 4bit/512byte ECC)
- Data Retention : 10 Years
- Command Register Operation
- Unique ID for Copyright Protection
- Package :
- K9LBG08U0M-PCB0/PIB0 : Pb-FREE PACKAGE

48 - Pin TSOP I ($12 \times 20 / 0.5 \mathrm{~mm}$ pitch)

- K9HCG08U1M-PCB0/PIB0 : Pb-FREE PACKAGE

48 - Pin TSOP I ($12 \times 20 / 0.5 \mathrm{~mm}$ pitch)

- K9HCG08U1M-ICB0/IIB0

52 - Pin TLGA (12 x $17 / 1.0 \mathrm{~mm}$ pitch)

- K9MDG08U5M-PCB0/PIB0 : Two K9HCG08U1M package stacked

48 - Pin TSOP I (12 x $20 / 0.5 \mathrm{~mm}$ pitch) : Pb-FREE PACKAGE

- K9MDG08U5M-ZCB0/ZIB0 : Two K9HCG08U1M package stacked 48 - Pin WELP (12 x 20 / 0.5 mm pitch) : Pb-FREE PACKAGE
- K9PDG08U5M-LCB0/LIB0 : Pb/Halogen-FREE PACKAGE 52 - Pin LLGA ($14 \times 18 / 1.00 \mathrm{~mm}$ pitch)

GENERAL DESCRIPTION

Offered in 4Gx8bit, the K9LBG08U0M is a 32G-bit NAND Flash Memory with spare 1G-bit. Its NAND cell provides the most costeffective solution for the solid state mass storage market. A program operation can be performed in typical 800μ s on the 4,224 -byte page and an erase operation can be performed in typical 1.5 ms on a ($512 \mathrm{~K}+16 \mathrm{~K}$)byte block. Data in the data register can be read out at 25 ns (K9XDG08U5M: 50ns) cycle time per byte. The I/O pins serve as the ports for address and data input/output as well as command input. The on-chip write controller automates all program and erase functions including pulse repetition, where required, and internal verification and margining of data. The K9LBG08U0M is an optimum solution for large nonvolatile storage applications such as solid state file storage and other portable applications requiring non-volatility.

PIN CONFIGURATION (TSOP1)

K9LBG08U0M-PCB0/PIB0

PACKAGE DIMENSIONS

48-PIN LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)

PIN CONFIGURATION (TSOP1)

K9HCG08U1M-PCB0/PIB0

PACKAGE DIMENSIONS

48-PIN LEAD/LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)

SAMSUNG

PIN CONFIGURATION (TLGA)

K9HCG08U1M - ICB0 / IIB0

PACKAGE DIMENSIONS

PIN CONFIGURATION (TSOP1-DSP)

K9MDG08U5M-PCB0/PIB0

PACKAGE DIMENSIONS

48-PIN LEAD/LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)

PIN CONFIGURATION (WELP-DSP)
K9MDG08U5M-ZCB0/ZIB0

PACKAGE DIMENSIONS

48-PIN LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE STACK TYPE

K9PDG08U5M-LCB0/LIB0

PACKAGE DIMENSIONS

PIN DESCRIPTION

Pin Name	Pin Function
$\mathrm{I} / \mathrm{O} \sim \mathrm{I} / \mathrm{O} 7$	DATA INPUTS/OUTPUTS The I/O pins are used to input command, address and data, and to output data during read operations. The I/ O pins float to high-z when the chip is deselected or when the outputs are disabled.
CLE	COMMAND LATCH ENABLE The CLE input controls the activating path for commands sent to the command register. When active high, commands are latched into the command register through the I/O ports on the rising edge of the $\overline{\mathrm{WE}}$ signal.
ALE	ADDRESS LATCH ENABLE The ALE input controls the activating path for address to the internal address registers. Addresses are latched on the rising edge of WE with ALE high.
$\overline{\mathrm{CE}} / \overline{\mathrm{CE}} 1$	CHIP ENABLE The $\overline{\mathrm{CE}} / \overline{\mathrm{CE}} 1$ input is the device selection control. When the device is in the Busy state, $\overline{\mathrm{CE}} / \overline{\mathrm{CE} 1}$ high is ignored, and the device does not return to standby mode in program or erase operation. Regarding $\overline{\mathrm{CE}} / \overline{\mathrm{CE}} 1$ control during read operation, refer to 'Page Read' section of Device operation
$\overline{\mathrm{CE} 2}$	CHIP ENABLE The $\overline{\mathrm{CE}} 2$ input enables the second K9LBG08U0M
$\overline{\mathrm{RE}}$	READ ENABLE The $\overline{R E}$ input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid tREA after the falling edge of $\overline{R E}$ which also increments the internal column address counter by one.
$\overline{\text { WE }}$	WRITE ENABLE The $\overline{\mathrm{WE}}$ input controls writes to the I/O port. Commands, address and data are latched on the rising edge of the WE pulse.
$\overline{W P}$	WRITE PROTECT The $\overline{\mathrm{WP}}$ pin provides inadvertent program/erase protection during power transitions. The internal high voltage generator is reset when the $\overline{\mathrm{WP}}$ pin is active low.
$\mathrm{R} / \overline{\mathrm{B}} / \mathrm{R} / \overline{\mathrm{B}} 1$	READY/BUSY OUTPUT The $R / \bar{B} / R / \bar{B} 1$ output indicates the status of the device operation. When low, it indicates that a program, erase or random read operation is in process and returns to high state upon completion. It is an open drain output and does not float to high-z condition when the chip is deselected or when outputs are disabled.
$\mathrm{R} / \mathrm{B} 2$	READY/BUSY OUTPUT The $R / \bar{B} 2$ input enables the second K9LBG08UOM
Vcc	POWER Vcc is the power supply for device.
Vss	GROUND
N.C	NO CONNECTION Lead is not internally connected.

NOTE : Connect all Vcc and Vss pins of each device to common power supply outputs.
Do not leave Vcc or Vss disconnected.
There are two $\overline{C E}$ pins ($\overline{C E} 1 \& \overline{C E} 2$) in the K9HCG08U1M, and four $\overline{C E}$ pins ($\overline{C E} 1 \& \overline{C E} 2 \& \overline{C E} 3 \& \overline{C E} 4$) in the K9XDG08U5M.
There are two R / \bar{B} pins ($R / \bar{B} 1 \& R / \bar{B} 2$) in the K9HCG08U1M, and four R / \bar{B} pins ($R / \bar{B} 1 \& R / \bar{B} 2$ \& $R / \bar{B} 3$ \& $R / \bar{B} 4$) in the K9XDG08U5M.

Figure 1. K9LBG08U0M Functional Block Diagram

Figure 2. K9LBG08U0M Array Organization

NOTE : Column Address : Starting Address of the Register.

* L must be set to "Low".
* The device ignores any additional input of address cycles than required.

Product Introduction

The K9LBG08U0M is a 33,792 Mbit($35,433,480,192$ bit) memory organized as $1,048,576$ rows(pages) by $4,224 \times 8$ columns. Spare 128 columns are located from column address of 4,096~4,223. A 4,224-byte data register is connected to memory cell arrays for accommodating data transfer between the I/O buffers and memory cells during page read and page program operations. The memory array is made up of 32 cells that are serially connected to form a NAND structure. Each of the 32 cells resides in a different page. A block consists of two NAND structured strings. A NAND structure consists of 32 cells. A cell has 2-bit data. Total 2,162,688 NAND cells reside in a block. The program and read operations are executed on a page basis, while the erase operation is executed on a block basis. The memory array consists of 4,096 separately erasable 512K-byte blocks. It indicates that the bit by bit erase operation is prohibited on the K9LBG08UOM.

The K9LBG08U0M has addresses multiplexed into $8 \mathrm{I} / \mathrm{Os}$. This scheme dramatically reduces pin counts and allows system upgrades to future densities by maintaining consistency in system board design. Command, address and data are all written through I/O's by bringing $\overline{\mathrm{WE}}$ to low while $\overline{\mathrm{CE}}$ is low. Those are latched on the rising edge of $\overline{\mathrm{WE}}$. Command Latch Enable(CLE) and Address Latch Enable(ALE) are used to multiplex command and address respectively, via the I/O pins. Some commands require one bus cycle. For example, Reset Command, Status Read Command, etc require just one cycle bus. Some other commands, like page read and block erase and page program, require two cycles: one cycle for setup and the other cycle for execution. The 2112M-byte physical space requires 33 addresses, thereby requiring five cycles for addressing : 2 cycles of column address, 3 cycles of row address, in that order. Page Read and Page Program need the same five address cycles following the required command input. In Block Erase operation, however, only three row address cycles are used. Device operations are selected by writing specific commands into the command register. Table 1 defines the specific commands of the K9LBG08U0M.

Table 1. Command Sets

Function	1st Set	2nd Set	Acceptable Command during Busy
Read	00 h	30 h	
Read for Copy Back	00 h	35 h	
Read ID	90 h	-	
Reset	FFh	-	O
Page Program	80 h	10 h	
Copy-Back Program	85 h	10 h	
Block Erase	60 h	D0h	
Random Data Input ${ }^{(1)}$	85 h	-	O
Random Data Output ${ }^{(1)}$	05 h	E0h	
Read Status	70 h		
Chip1 Status	F1h		
Chip2 Status	F2h		
Two-Plane Read ${ }^{(3)}$	$60 \mathrm{~h}---60 \mathrm{~h}$	30 h	
Two-Plane Read for Copy-Back	$60 \mathrm{~h}----60 \mathrm{~h}$	35 h	
Two-Plane Random Data Output ${ }^{(1)(3)}$	$00 \mathrm{~h}---05 \mathrm{~h}$	E0h	
Two-Plane Page Program ${ }^{(2)}$	$80 \mathrm{~h}---11 \mathrm{~h}$	$81 \mathrm{~h}----10 \mathrm{~h}$	
Two-Plane Copy-Back Program ${ }^{(2)}$	$85 \mathrm{~h}---11 \mathrm{~h}$	$81 \mathrm{~h}---10 \mathrm{~h}$	
Two-Plane Block Erase	$60 \mathrm{~h}---60 \mathrm{~h}$	D0h	
Page Program with 2KB Data ${ }^{(2)}$	$80 \mathrm{~h}----11 \mathrm{~h}$	$80 \mathrm{~h}---10 \mathrm{~h}$	
Copy-Back Program with 2KB Data ${ }^{(2)}$	$85 \mathrm{~h}---11 \mathrm{~h}$	$85 \mathrm{~h}---10 \mathrm{~h}$	

NOTE : 1. Random Data Input/Output can be executed in a page.
2. Any command between 11 h and $80 \mathrm{~h} / 81 \mathrm{~h} / 85 \mathrm{~h}$ is prohibited except $70 \mathrm{~h} / \mathrm{F} 1 \mathrm{~h} / / \mathrm{F} 2 \mathrm{~h}$ and FFh .
3. Two-Plane Random Data msut be used after Two-Plane Read operation
4. Interleave-operation between two chips is allowed.

It's prohibited to use F1h and F2h commands for other operations except interleave-operation.

Caution : Any undefined command inputs are prohibited except for above command set of Table 1.

Memory Map

K9LBG08U0M is arranged in four 8Gb memory planes. Each plane contains 2,048 blocks and 4224 byte page registers. This allows it to perform simultaneous page program and block erase by selecting one page or block from each plane. The block address map is configured so that two-plane program/erase operations can be executed by dividing the memory array into plane $0 \sim 1$ or plane $2 \sim 3$ separately.
For example, two-plane program/erase operation into plane 0 and plane 2 is prohibited. That is to say, two-plane program/erase operation into plane 0 and plane 1 or into plane 2 and plane 3 is allowed

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Rating	Unit
Voltage on any pin relative to Vss		Vcc	-0.6 to +4.6	V
		Vin	-0.6 to +4.6	
		VI/O	-0.6 to Vcc+0.3 (<4.6V)	
Temperature Under Bias	K9XXG08UXM-XCB0	Tbias	-10 to +125	${ }^{\circ} \mathrm{C}$
	K9XXG08UXM-XIB0		-40 to +125	
Storage Temperature	K9XXG08UXM-XCB0	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$
	K9XXG08UXM-XIB0			
Short Circuit Current		los	5	mA

NOTE

1. Minimum DC voltage is -0.6 V on input/output pins. During transitions, this level may undershoot to -2.0 V for periods $<30 \mathrm{~ns}$.

Maximum DC voltage on input/output pins is $\mathrm{Vcc}+0.3 \mathrm{~V}$ which, during transitions, may overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods $<20 \mathrm{~ns}$.
2. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltage reference to GND, K9XXG08UXM-XCB0 :TA=0 to $70^{\circ} \mathrm{C}$, K9XXG08UXM-XIB0:TA $=-40$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	K9LBG08U0M			Unit
		Min	Typ.	Max	
Supply Voltage	Vcc	2.7	3.3	3.6	V
Supply Voltage	Vss	0	0	0	V

DC AND OPERATING CHARACTERISTICS(Recommended operating conditions otherwise noted.)

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit
Operating Current	Page Read with Serial Access	Icc1	tRC=25ns, $\overline{\mathrm{CE}}=\mathrm{VIL}$, Iout $=0 \mathrm{~mA}$ (K9XDG08U5M: tRC=50ns)	-	15	35	mA
	Program	Icc2	-	-	15	35	
	Erase	Icc3	-	-	15	35	
Stand-by Current(TTL)		IsB1	$\overline{\mathrm{CE}}=\mathrm{VIH}, \overline{\mathrm{WP}}=0 \mathrm{~V} / \mathrm{Vcc}$	-	-	1	
Stand-by Current(CMOS)		IsB2	$\overline{\mathrm{CE}}=\mathrm{Vcc}-0.2, \overline{\mathrm{WP}}=0 \mathrm{~V} / \mathrm{Vcc}$	-	20	100	$\mu \mathrm{A}$
Input Leakage Current		ILI	Vin=0 to Vcc(max)	-	-	± 20	
Output Leakage Current		ILO	Vout=0 to Vcc(max)	-	-	± 20	
Input High Voltage		$\mathrm{VIH}^{(1)}$	-	$0.8 \times \mathrm{Vcc}$	-	Vcc+0.3	V
Input Low Voltage, All inputs		$\mathrm{VIL}^{(1)}$	-	-0.3	-	$0.2 \times \mathrm{Vcc}$	
Output High Voltage Level		VOH	$\mathrm{IOH}=-400 \mu \mathrm{~A}$	2.4	-	-	
Output Low Voltage Level		VoL	$\mathrm{loL}=2.1 \mathrm{~mA}$	-	-	0.4	
Output Low Current(R/B]		$\operatorname{loL}(\mathrm{R} / \overline{\mathrm{B}})$	$\mathrm{VOL}=0.4 \mathrm{~V}$	8	10	-	mA

NOTE :

1. VIL can undershoot to -0.4 V and VIH can overshoot to $\mathrm{VCC}+0.4 \mathrm{~V}$ for durations of 20 ns or less.
2. Typical value are measured at $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$. Not 100% tested.
3. The typical value of the K9HCG08U1M's ISB2 is $40 \mu \mathrm{~A}$ and the maximum value is $200 \mu \mathrm{~A}$.
4. The typical value of the K9XDG08U5M's ISB2 is $80 \mu \mathrm{~A}$ and the maximum value is $400 \mu \mathrm{~A}$.
5. The maximum value of K9HCG08U1M-P's ILI and ILO is $\pm 40 \mu \mathrm{~A}$ and the maximum value of K9HCG08U1M-I/L's ILI and ILO is $\pm 20 \mu \mathrm{~A}$.
6. The maximum value of K9PDG08U5M-L's ILI and ILO is $\pm 40 \mu \mathrm{~A}$ and K9MDG08U5M-P/Z's ILI and ILO is $\pm 80 \mu \mathrm{~A}$.

VALID BLOCK

Parameter	Symbol	Min	Typ.	Max	Unit
K9LBG08U0M	NvB	8,072	-	8,192	Blocks
K9HCG08U1M	NvB	16,144	-	16,384	Blocks
K9XDG08U5M	NvB	32,288	-	32,768	Blocks

NOTE

1. The device may include initial invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is presented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits which cause status failure during program and erase operation. Do not erase or program factory-marked bad blocks. Refer to the attached technical notes for appropriate management of initial invalid blocks.
2. The 1st block, which is placed on 00h block address, is guaranteed to be a valid block at the time of shipment.
3. The number of valid blocks is on the basis of single plane operations, and this may be decreased with two plane operations.

* : Each K9LBG08U0M chip in the K9HCG08U1M, K9XDG08U5M has Maximum 120 invalid blocks.

AC TEST CONDITION

(K9XXG08UXM-XCB0: TA=0 to $70^{\circ} \mathrm{C}$, K9XXG08UXM-XIB0:TA $=-40$ to $85^{\circ} \mathrm{C}, \mathrm{K} 9 X X G 08 \mathrm{UXM}$: Vcc=2.7V~3.6V unless otherwise noted)

Parameter	K9XXG08UXM
Input Pulse Levels	0V to Vcc
Input Rise and Fall Times	5 ns
Input and Output Timing Levels	$\mathrm{Vcc} / 2$
Output Load (Vcc:3.0V +/-10\%)	1 TTL GATE and CL=50pF(K9LBG08U0M-P, K9HCG08U1M-I)
	1 TTL GATE and CL=30pF (K9HCG08U1M-P/Z, K9XDG08U5M-P/Z/L)

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Item	Symbol	Test Condition	Min	Max			
				K9HCG08U1M	K9MDG08U5M		
Input/Output Capacitance	$\mathrm{CI/O}$	$\mathrm{VIL}=0 \mathrm{~V}$	-	10	20	40	pF
Input Capacitance	CIN	$\mathrm{VIN}=0 \mathrm{~V}$	-	10	20	40	pF

NOTE : 1. Capacitance is periodically sampled and not 100% tested.
2. K9HCG08U1M-IXB0's capacitance(I/O, Input) is 13 pF and K9PDG08U5M-LXB0's capacitance(I/O, Input) is 23 pF .

MODE SELECTION

CLE	ALE	$\overline{C E}$	$\overline{\text { WE }}$	$\overline{\mathrm{RE}}$	$\overline{\mathbf{W P}}$	Mode
H	L	L	\square	H	X	Read Command Input
L	H	L	7 -	H	X	Address Input(5clock)
H	L	L	7 -	H	H	Write Mode Command Input
L	H	L	ㄴ.	H	H	Address Input(5clock)
L	L	L	\checkmark	H	H	Data Input
L	L	L	H	\downarrow -	X	Data Output
X	X	X	X	H	X	During Read(Busy)
X	X	X	X	X	H	During Program(Busy)
X	X	X	X	X	H	During Erase(Busy)
X	$\mathrm{X}^{(1)}$	X	X	X	L	Write Protect
X	X	H	X	X	OV/Vcc ${ }^{(2)}$	Stand-by

NOTE : 1. X can be Vil or Vir.
2. $\overline{\mathrm{WP}}$ should be biased to CMOS high or CMOS low for standby.

Program / Erase Characteristics

Parameter	Symbol	Min	Typ	Max	Unit
Program Time	tPRoG	-	0.8	3	ms
Dummy Busy Time for Multi Plane Program	tDBSY		0.5	1	$\mu \mathrm{~s}$
Number of Partial Program Cycles in the Same Page	Nop	-	-	1	cycle
Block Erase Time	tBERS	-	1.5	10	ms

NOTE

1. Typical value is measured at $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$. Not 100% tested.
2. Typical Program time is defined as the time within which more than 50% of the whole pages are programed at 3.3 V Vcc and $25^{\circ} \mathrm{C}$ temperature. 3. Within a same block, program time(tPROG) of page group A is faster than that of page group B. Typical tPROG is the average program time of the page group A and B (Table 5).

Page Group A: Page 0, 1, 2, 3, 6, 7, 10, 11, ... , 110, 111, 114, 115, 118, 119, 122, 123
Page Group B: Page 4, 5, 8, 9, 12, 13, 16, 17, ... , 116, 117, 120, 121, 124, 125, 126, 127

AC Timing Characteristics for Command / Address / Data Input

Parameter	Symbol	Min		Max		Unit
		K9LBG08U0M K9HCG08U1M	K9XDG08U5M	K9LBG08U0M	K9XDG08U5M	
				K9HCG08U1M		
CLE Setup Time	tCLS ${ }^{(1)}$	12	25	-	-	ns
CLE Hold Time	tCLH	5	10	-	-	ns
$\overline{\mathrm{CE}}$ Setup Time	tcs ${ }^{(1)}$	20	35	-	-	ns
$\overline{\mathrm{CE}}$ Hold Time	tch	5	10	-	-	ns
$\overline{\text { WE Pulse Width }}$	twp	12	25	-	-	ns
ALE Setup Time	taLs ${ }^{(1)}$	12	25	-	-	ns
ALE Hold Time	talh	5	10	-	-	ns
Data Setup Time	tDS ${ }^{(1)}$	12	20	-	-	ns
Data Hold Time	tDH	5	10	-	-	ns
Write Cycle Time	twc	25	45	-	-	ns
$\overline{\text { WE High Hold Time }}$	twh	10	15	-	-	ns
Address to Data Loading Time	tADL ${ }^{(2)}$	$100{ }^{(2)}$	100			ns

NOTES : 1. The transition of the corresponding control pins must occur only once while $\overline{W E}$ is held low.
2. tADL is the time from the $\overline{W E}$ rising edge of final address cycle to the $\overline{W E}$ rising edge of first data cycle.

AC Characteristics for Operation

Parameter	Symbol	Min		Max		Unit
		K9LBG08U0M	K9XDG08U5M	K9LBG08U0M	K9XDG08U5M	
		K9HCG08U1M		K9HCG08U1M		
Data Transfer from Cell to Register	tR	-		60	60	$\mu \mathrm{s}$
ALE to $\overline{\mathrm{RE}}$ Delay	tAR	10	10	-		ns
CLE to $\overline{\mathrm{RE}}$ Delay	tCLR	10	10	-		ns
Ready to $\overline{\mathrm{RE}}$ Low	tRR	20	20	-		ns
$\overline{\mathrm{RE}}$ Pulse Width	tRP	12	25	-		ns
$\overline{\text { WE High to Busy }}$	twb	-	-	100	100	ns
Read Cycle Time	tRC	25	50	-	-	ns
$\overline{\mathrm{RE}}$ Access Time	trea	-	-	20	30	ns
$\overline{\mathrm{CE}}$ Access Time	tcea	-	-	25	45	ns
$\overline{\mathrm{RE}}$ High to Output Hi-Z	trhz	-	-	100	100	ns
$\overline{\mathrm{CE}}$ High to Output Hi-Z	tchz	-	-	30	30	ns
$\overline{\overline{C E}}$ High to ALE or CLE Don't Care	tCSD	0	0	-	-	ns
$\overline{\mathrm{RE}}$ High to Output Hold	tRHOH	15	15	-	-	ns
$\overline{\mathrm{RE}}$ Low to Output Hold	trioh	5	-	-	-	ns
$\overline{\mathrm{CE}}$ High to Output Hold	tcor	15	15	-	-	ns
$\overline{\mathrm{RE}}$ High Hold Time	tren	10	15	-	-	ns
Output Hi-Z to $\overline{\mathrm{RE}}$ Low	tIR	0	0	-	-	ns
$\overline{\mathrm{RE}}$ High to $\overline{\mathrm{WE}}$ Low	tRHW	100	100	-	-	ns
$\overline{\text { WE High to } \overline{\mathrm{RE}} \text { Low }}$	twhR	60	60	-	-	ns
Device Resetting Time(Read/Program/Erase)	tRST	-	-	5/10/500 ${ }^{(1)}$	5/10/500 ${ }^{(1)}$	$\mu \mathrm{s}$

NOTE: 1. If reset command(FFh) is written at Ready state, the device goes into Busy for maximum $5 \mu \mathrm{~s}$.

NAND Flash Technical Notes

Initial Invalid Block(s)

Initial invalid blocks are defined as blocks that contain one or more initial invalid bits whose reliability is not guaranteed by Samsung. The information regarding the initial invalid block(s) is called the initial invalid block information. Devices with initial invalid block(s) have the same quality level as devices with all valid blocks and have the same AC and DC characteristics. An initial invalid block(s) does not affect the performance of valid block(s) because it is isolated from the bit line and the common source line by a select transistor. The system design must be able to mask out the initial invalid block(s) via address mapping. The 1st block, which is placed on 00h block address, is guaranteed to be a valid block at the time of shipment.

Identifying Initial Invalid Block(s)

All device locations are erased(FFh) except locations where the initial invalid block(s) information is written prior to shipping. The initial invalid block(s) status is defined by the 1st byte in the spare area. Samsung makes sure that the last page of every initial invalid block has non-FFh data at the column address of 4,096. The initial invalid block information is also erasable in most cases, and it is impossible to recover the information once it has been erased. Therefore, the system must be able to recognize the initial invalid block(s) based on the initial invalid block information and create the initial invalid block table via the following suggested flow chart(Figure 3). Any intentional erasure of the initial invalid block information is prohibited.

Figure 3. Flow chart to create initial invalid block table.

NAND Flash Technical Notes (Continued)

Error in write or read operation
Within its life time, additional invalid blocks may develop with NAND Flash memory. Refer to the qualification report for the actual data. Block replacement should be done upon erase or program error.

Failure Mode		Detection and Countermeasure sequence
Write	Erase Failure	Status Read after Erase --> Block Replacement
	Program Failure	Status Read after Program --> Block Replacement
Read	Up to Four Bit Failure	Verify ECC -> ECC Correction

ECC
: Error Correcting Code --> RS Code etc.
Example) 4bit correction / 512-byte

Program Flow Chart

* : If program operation results in an error, map out the block including the page in error and copy the target data to another block.

NAND Flash Technical Notes (Continued)
Erase Flow Chart
Read Flow Chart

* : If erase operation results in an error, map out the failing block and replace it with another block.

Block Replacement

* Step1

When an error happens in the nth page of the Block 'A' during erase or program operation.

* Step2

Copy the data in the 1st $\sim(n-1)$ th page to the same location of another free block. (Block 'B')

* Step3

Then, copy the nth page data of the Block ' A ' in the buffer memory to the nth page of the Block 'B'.

* Step4

Do not erase or program to Block 'A' by creating an 'invalid block' table or other appropriate scheme.

NAND Flash Technical Notes (Continued)

Addressing for program operation

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) pages of the block. Random page address programming is prohibited. In this case, the definition of LSB page is the LSB among the pages to be programmed. Therefore, LSB doesn't need to be page 0 .

Ex.) Random page program (Prohibition)
DATA IN: Data $(1) \longrightarrow$ Data (128)

Interleave Page Program

K9LBG08U0M is composed of two K9GAG08U0Ms. K9LBG08U0M provides interleaving operation between two K9GAG08U0Ms.

This interleaving page program improves the system throughput almost twice compared to non-interleaving page program.

At first, the host issues page program command to one of the K9GAG08U0M chips, say K9GAG08U0M(chip \#1). Due to this K9LBG08U0M goes into busy state. During this time, K9GAG08U0M(chip \#2) is in ready state. So it can execute the page program command issued by the host.

After the execution of page program by K9GAG08U0M(chip \#1), it can execute another page program regardless of the K9GAG08U0M(chip \#2). Before that the host needs to check the status of K9GAG08U0M(chip \#1) by issuing F1h command. Only when the status of K9GAG08U0M(chip \#1) becomes ready status, host can issue another page program command. If the K9GAG08U0M(chip \#1) is in busy state, the host has to wait for the K9GAG08U0M(chip \#1) to get into ready state.

Similarly, K9GAG08U0M(chip \#2) can execute another page program after the completion of the previous program. The host can monitor the status of K9GAG08U0M(chip \#2) by issuing F2h command. When the K9GAG08U0M(chip \#2) shows ready state, host can issue another page program command to K9GAG08U0M(chip \#2).

This interleaving algorithm improves the system throughput almost twice. The host can issue page program command to each chip individually. This reduces the time lag for the completion of operation.

NOTES : During interleave operations, 70 h command is prohibited.
Interleave Page Program

State A : Chip \#1 is executing a page program operation and chip \#2 is in ready state. So the host can issue a page program command to chip \#2. State B : Both chip \#1 and chip \#2 are executing page program operation. \#1. If chip \#1 is ready, status I/O6 is "1" and the system can issue another page program command to chip \#1 State D: Chip \#1 and Chip \#2 are ready.
According to the above process, the system can operate page program on chip \#1 and chip \#2 alternately.

Interleave Block Erase

Interleave Two-Plane Page Program

State A: Chip \#1 is executing a page program operation, and chip \#2 is in ready state. So the host can issue a page program command to chip \#2. State B : Both chip \#1 and chip \#2 are executing page program operation.
State C : Page program on chip \#1 is completed and chip \#1 is ready for the next operation. Chip \#2 is still executing page program operation.
State D : Both chip \#1 and chip \#2 are ready.
Note: *F1h command is required to check the
$\begin{aligned} \text { Note : } & \text { *F1h command is required to check the status of chip \#1 to issue the next page program command to chip \#1. } \\ & \text { F2h command is required to check the status of chip \#2 to issue the next page program command to chip \#2. }\end{aligned}$ According to the above process, the system can operate two-plane page program on chip \#1 and chip \#2 alternately.
Interleave Two-Plane Block Erase

State A: Chip \#1 is executing a block erase operation, and chip \#2 is in ready state. So the host can issue a block erase command to chip \#2. State B : Both chip \#1 and chip \#2 are executing block erase operation.
State C : Block erase on chip \#1 is completed and chip \#1 is ready for the next operation. Chip \#2 is still executing block erase operation.
State D: Both chip \#1 and chip \#2 are ready.
Note: *F1h command is required to check th
Note: "F1h command is required to check the status of chip \#1 to issue the next block erase command to chip \#1.
F2h command is required to check the status of chip \#2 to issue the next block erase command to chip \#2.
According to the above process, the system can operate two-plane block erase on chip \#1 and chip \#2 alternately.
Interleave Read to Page Program Operation

Interleave Copy-Back Program Operation

State A: Chip \#1 is executing a copy-back program operation, and chip \#2 is in ready state. So the host can issue a read for copy-back command to chip \#2.
State B : Both chip \#1 is executing copy-back program operation and chip \#2 is executing read for copy-back operation.
State C: Read for copy-back operation on chip \#2 is completed and chip \#2 is ready for the next operation. Chip \#1 is still executing copy-back program operation. State D : Both chip \#1 and chip \#2 are ready.
State E: Chip \#2 is executing a copy-back program operation, and chip \#1 is in ready state. So the host can issue a read for copy-back command to chip \#1.
S Read for State D: Both chip \#1 and chip \#2 are ready.
Note : *F1h command is required to check the status of chip \#1 to issue the next command to chip \#1.
As the above process, the system can operate Interleave copy-back program on chip \#1 and chip \#2 alternatively.

Interleave Two-Plane Copy Back Program

State A: Chip \#1 is executing a page program operation, and chip \#2 is in ready state. So the host can issue a page program command to chip \#2. State B : Both chip \#1 and chip \#2 are executing page program operation. State C : Page program on chip \#1 is completed and chip \#1 is ready for the next operation. Chip \#2 is still executing page program operation. State D : Both chip \#1 and chip \#2 are ready.
Note: ${ }^{*}$ F1h command is required to check the status of chip \#1 to issue the next page program command to chip \#1. According to the above process, the system can operate two-plane page program on chip \#1 and chip \#2 alternately.

System Interface Using $\overline{\mathbf{C E}}$ don't-care.

For an easier system interface, $\overline{\mathrm{CE}}$ may be inactive during the data-loading or serial access as shown below. The internal $4,224 \mathrm{byte}$ data registers are utilized as separate buffers for this operation and the system design gets more flexible. In addition, for voice or audio applications which use slow cycle time on the order of μ-seconds, de-activating $\overline{C E}$ during the data-loading and serial access would provide significant savings in power consumption.

Figure 4. Program Operation with CE don't-care.

NOTE

Device	I/O	DATA	ADDRESS				
	I/Ox	Data In/Out	Col. Add1	Col. Add2	Row Add1	Row Add2	Row Add3
K9LBG08U0M	I/O $0 \sim$ I/O 7	$\sim 4,224$ byte	A0~A7	A8~A12	A13~A20	A21~A28	A29~A32

Command Latch Cycle

Address Latch Cycle

Input Data Latch Cycle

* Serial Access Cycle after Read(CLE=L, $\overline{\mathrm{WE}}=\mathrm{H}, \mathrm{ALE}=\mathrm{L}$)

Serial Access Cycle after Read(EDO Type, CLE=L, $\overline{\mathrm{WE}}=\mathrm{H}, \mathrm{ALE}=\mathrm{L})$

Status Read Cycle

Read Operation

Read Operation(Intercepted by $\overline{\mathrm{CE}}$)

Random Data Output In a Page

Page Program Operation

NOTES : tADL is the time from the $\overline{\mathrm{WE}}$ rising edge of final address cycle to the $\overline{\mathrm{WE}}$ rising edge of first data cycle.

NOTES : 1. tADL is the time from the $\overline{W E}$ rising edge of final address cycle to the $\overline{W E}$ rising edge of first data cycle.

Block Erase Operation

Two-Plane Page Read Operation with Two-Plane Random Data Out

Note: Any command between 11 h and 81 h is prohibited except $70 \mathrm{~h} / \mathrm{F} 1 \mathrm{~h} / \mathrm{F} 2$ and FFh.

Read ID Operation

Device	Device Code(2nd Cycle)	3rd Cycle	4th Cycle	5th Cycle
K9LBG08U0M	D7h	55h	B6h	78h
K9HCG08U1M	Same as each K9LBG08U0M in it.			

ID Definition Table

90 ID : Access command =90H

	Description
$1^{\text {st }}$ Byte	Maker Code
$2^{\text {nd }}$ Byte	Device Code
$3^{\text {rd }}$ Byte	Internal Chip Number, Cell Type, Number of Simultaneously Programmed Pages, etc
$4^{\text {th }}$ Byte	Page Size, Block Size, Spare Size, Organization, Serial Access Minimum
$5^{\text {th }}$ Byte	Plane Number, Plane Size

3rd ID Data

	Description	I/O7	I/O6	I/O5 I/O4	I/O3 I/O2	I/O1 1/00
Internal Chip Number	$\begin{aligned} & 1 \\ & 2 \\ & 4 \\ & 8 \end{aligned}$					0 0 0 1 1 0 1 1
Cell Type	2 Level Cell 4 Level Cell 8 Level Cell 16 Level Cell				$\begin{array}{ll} \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	
Number of Simultaneously Programmed Pages	$\begin{aligned} & 1 \\ & 2 \\ & 4 \\ & 8 \end{aligned}$			$\begin{array}{ll} \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$		
Interleave Program Between multiple chips	Not Support Support		$\begin{aligned} & 0 \\ & 1 \end{aligned}$			
Cache Program	Not Support Support	$\begin{aligned} & 0 \\ & 1 \end{aligned}$				

4th ID Data

	Description	I/07	I/O6	I/O5 I/O4	I/O3	I/O2	I/O1 1/00
Page Size (w/o redundant area)	$\begin{aligned} & 1 \mathrm{~KB} \\ & 2 \mathrm{~KB} \\ & 4 \mathrm{~KB} \\ & 8 \mathrm{~KB} \end{aligned}$						0 0 0 1 1 0 1 1
Block Size (w/o redundant area)	$\begin{aligned} & 64 \mathrm{~KB} \\ & 128 \mathrm{~KB} \\ & 256 \mathrm{~KB} \\ & 512 \mathrm{~KB} \end{aligned}$			0 0 0 1 1 0 1 1			
Redundant Area Size (byte/512byte)	$\begin{aligned} & 8 \\ & 16 \end{aligned}$					0	
Organization	$\begin{aligned} & \text { x8 } \\ & \text { x16 } \end{aligned}$		$\begin{aligned} & 0 \\ & 1 \end{aligned}$				
Serial Access Minimum	50ns/30ns 25ns Reserved Reserved	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$		

5th ID Data

	Description	1/07	I/06 1/05	I/O4	I/O3 I/O2	I/01	1/00
Plane Number	$\begin{aligned} & \hline 1 \\ & 2 \\ & 4 \\ & 8 \end{aligned}$				$\begin{array}{ll} \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$		
Plane Size (w/o redundant Area)	64 Mb 128 Mb 256Mb 512Mb 1Gb 2Gb 4Gb 8Gb		$\begin{array}{ll} \hline 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array}$	0 1 0 1 0 1 0 1			
Reserved		0				0	0

Device Operation

PAGE READ

Page read is initiated by writing $00 \mathrm{~h}-30 \mathrm{~h}$ to the command register along with five address cycles. After initial power up, 00 h command is latched. Therefore only five address cycles and 30h command initiates that operation after initial power up. The 4,224 bytes of data within the selected page are transferred to the data registers in less than $60 \mu \mathrm{~s}(\mathrm{tR})$. The system controller can detect the completion of this data transfer (tR) by analyzing the output of R / \bar{B} pin. Once the data in a page is loaded into the data registers, they may be read out in 25 ns (K9XDG08U5M : 50ns) cycle time by sequentially pulsing $\overline{\mathrm{RE}}$. The repetitive high to low transitions of the $\overline{\mathrm{RE}}$ clock make the device output the data starting from the selected column address up to the last column address.
The device may output random data in a page instead of the consecutive sequential data by writing random data output command. The column address of next data, which is going to be out, may be changed to the address which follows random data output command. Random data output can be operated multiple times regardless of how many times it is done in a page.

Figure 6. Read Operation

Figure 7. Random Data Output In a Page

Col Add1,2 \& Row Add1,2,3

PAGE PROGRAM

The device is programmed basically on a page basis, and the number of consecutive partial page programming operation within the same page without an intervening erase operation must not exceed 1 time for the page. The addressing should be done in sequential order in a block. A page program cycle consists of a serial data loading period in which up to 4,224bytes of data may be loaded into the data register, followed by a non-volatile programming period where the loaded data is programmed into the appropriate cell.
The serial data loading period begins by inputting the Serial Data Input command(80h), followed by the five cycle address inputs and then serial data loading. The words other than those to be programmed do not need to be loaded. The device supports random data input in a page. The column address for the next data, which will be entered, may be changed to the address which follows random data input command(85h). Random data input may be operated multiple times regardless of how many times it is done in a page. The Page Program confirm command(10h) initiates the programming process. Writing 10h alone without previously entering the serial data will not initiate the programming process. The internal write state controller automatically executes the algorithms and timings necessary for program and verify, thereby freeing the system controller for other tasks. Once the program process starts, the Read Status Register command may be entered to read the status register. The system controller can detect the completion of a program cycle by monitoring the R/B output, or the Status bit(I/O 6) of the Status Register. Only the Read Status command and Reset command are valid while programming is in progress. When the Page Program is complete, the Write Status Bit(I/O 0) may be checked(Figure 8). The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s. The command register remains in Read Status command mode until another valid command is written to the command register.

Figure 8. Program \& Read Status Operation

Figure 9. Random Data Input In a Page

COPY-BACK PROGRAM

Copy-Back program with Read for Copy-Back is configured to quickly and efficiently rewrite data stored in one page without data reloading when the bit error is not in data stored. Since the time-consuming re-loading cycles are removed, the system performance is improved. The benefit is especially obvious when a portion of a block is updated and the rest of the block also needs to be copied to the newly assigned free block. Copy-Back operation is a sequential execution of Read for Copy-Back and of copy-back program with the destination page address. A read operation with " 35 h " command and the address of the source page moves the whole 4,224-byte data into the internal data buffer. A bit error is checked by sequential reading the data output. In the case where there is no bit error, the data do not need to be reloaded. Therefore Copy-Back program operation is initiated by issuing Page-Copy Data-Input command (85h) with destination page address. Actual programming operation begins after Program Confirm command (10h) is issued. Once the program process starts, the Read Status Register command (70h) may be entered to read the status register. The system controller can detect the completion of a program cycle by monitoring the R/B output, or the Status bit(l/O 6) of the Status Register. When the Copy-Back Program is complete, the Write Status Bit(I/O 0) may be checked(Figure 10 \& Figure 11). The command register remains in Read Status command mode until another valid command is written to the command register. During copy-back program, data modification is possible using random data input command (85h) as shown in Figure11.

Figure 10. Page Copy-Back Program Operation

Figure 11. Page Copy-Back Program Operation with Random Data Input

BLOCK ERASE

The Erase operation is done on a block basis. Block address loading is accomplished in three cycles initiated by an Erase Setup command(60h). Only address A20 to A32 is valid while A13 to A19 is ignored. The Erase Confirm command(DOh) following the block address loading initiates the internal erasing process. This two-step sequence of setup followed by execution command ensures that memory contents are not accidentally erased due to external noise conditions.
At the rising edge of $\overline{\mathrm{WE}}$ after the erase confirm command input, the internal write controller handles erase and erase-verify. When the erase operation is completed, the Write Status Bit(I/O 0) may be checked. Figure 13 details the sequence.

Figure 13. Block Erase Operation

R / \bar{B}

I/Ox

TWO-PLANE PAGE READ

Two-Plane Page Read is an extension of Page Read, for a single plane with 4,224 byte page registers. Since the device is equipped with two memory planes, activating the two sets of 4,224 byte page registers enables a random read of two pages. Two-Plane Page Read is initiated by repeating command 60 h followed by three address cycles twice. In this case only same page of same block can be selected from each plane.
After Read Confirm command(30h) the 8,448 bytes of data within the selected two page are transferred to the data registers in less than $60 \mathrm{us}(\mathrm{tR})$. The system controller can detect the completion of data transfer(tR) by monitoring the output of R / B pin.
Once the data is loaded into the data registers, the data output of first plane can be read out by issuing command 00h with Five Address Cycles, command 05h with two column address and finally EOh. The data output of second plane can be read out using the identical command sequences. The restrictions for Two-Plane Page Program are shown in Figure 14. Two-Plane Read must be used in the block which has been programmed with Two-Plane Page Program.

Figure 14. Two-Plane Page Read Operation with Two-Plane Random Data Out

TWO-PLANE PAGE PROGRAM

Two-Plane Page Program is an extension of Page Program, for a single plane with 4,224 byte page registers. Since the device is equipped with two memory planes, activating the two sets of 4,224 byte page registers enables a simultaneous programming of two pages.
After writing the first set of data up to 4,224 byte into the selected page register, Dummy Page Program command (11h) instead of actual Page Program (10h) is inputted to finish data-loading of the first plane. Since no programming process is involved, R/B remains in Busy state for a short period of time(tDBSY). Read Status command (70h/F1h) may be issued to find out when the device returns to Ready state by polling the Ready/Busy status bit(I/O 6). Then the next set of data for the other plane is inputted after the 81h command and address sequences. After inputting data for the last plane, actual True Page Program(10h) instead of dummy Page Program command (11h) must be followed to start the programming process. The operation of R/B and Read Status is the same as that of Page Program. Status bit of I/O 0 is set to "1" when any of the pages fails. Restriction in addressing with Two-Plane Page Program is shown in Figure15.

Figure 15. Two-Plane Page Program

NOTE : 1. It is noticeable that physically same row address is applied to two planes
2. Any command between 11 h and 81 h is prohibited except $70 \mathrm{~h} / \mathrm{F} 1 \mathrm{~h} / \mathrm{F} 2$ and FFh .

Data
Input

TWO-PLANE BLOCK ERASE

Basic concept of Two-Plane Block Erase operation is identical to that of Two-Plane Page Program. Up to two blocks, one from each plane can be simultaneously erased. Standard Block Erase command sequences (Block Erase Setup command(60h) followed by three address cycles) may be repeated up to twice for erasing up to two blocks. Only one block should be selected from each plane. The Erase Confirm command(DOh) initiates the actual erasing process. The completion is detected by monitoring R/B pin or Ready/ Busy status bit (I/O 6).

Figure 16. Two-Plane Erase Operation

TWO-PLANE COPY-BACK PROGRAM

Two-Plane Copy-Back Program is an extension of Copy-Back Program, for a single plane with 4224 byte page registers. Since the device is equipped with two memory planes, activating the two sets of 4224 byte page registers enables a simultaneous programming of two pages.

Figure 17. Two-Plane Copy-Back Program Operation

Note: 1. Copy-Back Program operation is allowed only within the same memory plane.
2. Any command between 11 h and 81 h is prohibited except $70 \mathrm{~h} / \mathrm{F} 1 \mathrm{~h} / \mathrm{F} 2 \mathrm{~h}$ and FFh.

Figure 18. Two-Plane Copy-Back Program Operation with Random Data Input

Note: 1. Copy-Back Program operation is allowed only within the same memory plane.
2. Any command between 11 h and 81 h is prohibited except $70 \mathrm{~h} / \mathrm{F} 1 \mathrm{~h} / \mathrm{F} 2 \mathrm{~h}$ and FFh.

READ STATUS

The device contains a Status Register which may be read to find out whether program or erase operation is completed, and whether the program or erase operation is completed successfully. After writing 70h or F1h/F2h command to the command register, a read cycle outputs the content of the Status Register to the I/O pins on the falling edge of $\overline{C E}$ or $\overline{R E}$, whichever occurs last. This two line control allows the system to poll the progress of each device in multiple memory connections even when R / \bar{B} pins are common-wired. $\overline{R E}$ or $\overline{C E}$ does not need to be toggled for updated status. Refer to table 2 for specific $70 h$ Status Register definitions and table 3 for specific F1h Status Register definitions. The command register remains in Status Read mode until further commands are issued to it. Therefore, if the status register is read during a random read cycle, the read command(00h) should be given before starting read cycles.

Table 2. 70h Read Status Register Definition

I/O No.	Page Program	Block Erase	Read	Definition	
I/O 0	Pass/Fail	Pass/Fail	Not use	Pass : "0"	Fail : "1"
I/O 1	Not use	Not use	Not use	Don't -cared	
I/O 2	Not use	Not use	Not use	Don't -cared	
I/O 3	Not Use	Not Use	Not Use	Don't -cared	
I/O 4	Not Use	Not Use	Not Use	Don't -cared	
I/O 5	Not Use	Not Use	Not Use	Don't -cared	
I/O 6	Ready/Busy	Ready/Busy	Ready/Busy	Busy : "0"	Ready : "1"
I/O 7	Write Protect	Write Protect	Write Protect	Protected : "0"	Not Protected : "1"

NOTE : 1. I/Os defined 'Not use' are recommended to be masked out when Read Status is being executed.

Table 3. F1h/F2h Read Status Register Definition

I/O No.	Page Program	Block Erase	Read	Definition	
I/O 0	Chip Pass/Fail	Chip Pass/Fail	Not use	Pass : "0"	Fail : "1"
I/O 1	Plane0 Pass/Fail	Plane0 Pass/Fail	Not use	Pass : "0"	Fail : "1"
I/O 2	Plane1 Pass/Fail	Plane1 Pass/Fail	Not use	Pass : "0"	Fail : "1"
I/O 3	Not Use	Not Use	Not Use	Don't -cared	
I/O 4	Not Use	Not Use	Not Use	Don't -cared	
I/O 5	Not Use	Not Use	Not Use	Don't -cared	
I/O 6	Ready/Busy	Ready/Busy	Ready/Busy	Busy : "0"	Ready : "1"
I/O 7	Write Protect	Write Protect	Write Protect	Protected : "0"	Not Protected : "1"

NOTE : 1. I/Os defined 'Not use' are recommended to be masked out when Read Status is being executed.

READ ID

The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of 00 h . Four read cycles sequentially output the manufacturer code(ECh), and the device code and 3rd cycle ID, 4th cycle ID, 5th cycle respectively. The command register remains in Read ID mode until further commands are issued to it. Figure 19 shows the operation sequence.

Figure 19. Read ID Operation

RESET

The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state during random read, program or erase mode, the reset operation will abort these operations. The contents of memory cells being altered are no longer valid, as the data will be partially programmed or erased. The command register is cleared to wait for the next command, and the Status Register is cleared to value COh when $\overline{W P}$ is high. Refer to Table 4 for device status after reset operation. If the device is already in reset state a new reset command will be accepted by the command register. The R/B pin changes to low for tRST after the Reset command is written. Refer to Figure 20 below.

Figure 20. RESET Operation
R / \bar{B}

1/0x

Table 4. Device Status

	After Power-up	After Reset
Operation mode	00h Command is latched	Waiting for next command

Table 5. Paired Page Address Information

Paired Page Address		Paired Page Address	
00h	04h	01h	05h
02h	08h	03h	09h
06h	0Ch	07h	ODh
OAh	10h	OBh	11h
OEh	14h	OFh	15h
12h	18h	13h	19h
16h	1Ch	17h	1Dh
1Ah	20h	1Bh	21h
1Eh	24h	1Fh	25h
22h	28h	23h	29h
26h	2 Ch	27h	2Dh
2Ah	30h	2Bh	31h
2Eh	34h	2Fh	35h
32h	38h	33h	39h
36h	3Ch	37h	3Dh
3Ah	40h	3Bh	41h
3Eh	44h	3Fh	45h
42h	48h	43h	49h
46h	4 Ch	47h	4Dh
4Ah	50h	4Bh	51h
4Eh	54h	4Fh	55h
52h	58h	53h	59h
56h	5Ch	57h	5Dh
5Ah	60h	5Bh	61h
5Eh	64h	5Fh	65h
62h	68h	63h	69h
66h	6 Ch	67h	6Dh
6Ah	70h	6Bh	71h
6Eh	74h	6Fh	75h
72h	78h	73h	79h
76h	7Ch	77h	7Dh
7Ah	7Eh	7Bh	7Fh

Note: When program operation is abnormally aborted (ex. power-down, reset), not only page data under program but also paired page data may be damaged(Table 5).

READY/BUSY

The device has a R / \bar{B} output that provides a hardware method of indicating the completion of a page program, erase and random read completion. The R / \bar{B} pin is normally high but transitions to low after program or erase command is written to the command register or random read is started after address loading. It returns to high when the internal controller has finished the operation. The pin is an open-drain driver thereby allowing two or more R / \bar{B} outputs to be Or-tied. Because pull-up resistor value is related to $\operatorname{tr}(R / \bar{B})$ and current drain during busy(ibusy), an appropriate value can be obtained with the following reference chart(Fig 21). Its value can be determined by the following guidance.

Figure 21. Rp vs tr ,tf \& Rp vs ibusy

$R p$ value guidance
$R p(\min , 3.3 \mathrm{~V}$ part $)=\frac{\mathrm{Vcc}(\text { Max. })-\mathrm{VoL}(\text { Max. })}{\mathrm{IOL}+\Sigma \mathrm{IL}}=\frac{3.2 \mathrm{~V}}{8 \mathrm{~mA}+\Sigma \mathrm{IL}}$
where $I L$ is the sum of the input currents of all devices tied to the R / \bar{B} pin.
$R p(\max)$ is determined by maximum permissible limit of $t r$

DATA PROTECTION \& POWER UP SEQUENCE

The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector disables all functions whenever Vcc is below about 2V. WP pin provides hardware protection and is recommended to be kept at VIL during power-up and power-down. A recovery time of minimum $10 \mu \mathrm{~s}$ is required before internal circuit gets ready for any command sequences as shown in Figure 22. The two step command sequence for program/erase provides additional software protection.

Figure 22. AC Waveforms for Power Transition

2KB PROGRAM OPERATION TIMING GUIDE

K9GAG08X0M is designed also to support the program operation with 2KByte data to offer the backward compatibility to the controller which uses the NAND with 2KByte page. The command sequences are as follows.

Figure A-1. (2KB X 2) Program Operation

Note: Any command between 11 h and 81 h is prohibited except $70 \mathrm{~h} / \mathrm{F} 1 \mathrm{~h} / \mathrm{F} 2 \mathrm{~h}$ and FFh.

Figure A-2. (2KB X 2) Copy-Back Program Operation

Note: 1. Copy-Back Program operation is allowed only within the same memory plane.
2. Any command between 11 h and 85 h is prohibited except $70 \mathrm{~h} / \mathrm{F} 1 \mathrm{~h} / \mathrm{F} 2 \mathrm{~h}$ and FFh.

Figure A-3. (2KB X 2) Copy-Back Program Operation with Random Data Input

Note: 1. Copy-Back Program operation is allowed only within the same memory plane.
2. Any command between 11 h and 85 h is prohibited except $70 \mathrm{~h} / \mathrm{F} 1 \mathrm{~h} / \mathrm{F} 2 \mathrm{~h}$ and FFh.

2-PLANE PAGE PROGRAM OPERATION USING 4KB BUFFER RAM

K9GAG08X0M consists of 4KB pages and can support Two-Plane program operation. The internal RAM requirement for a controller is 8 KB , but for those controllers which support less than 8KB RAM, the following sequence can be used for Two-Plane program operation.

(1) : Two-Plane Read for Copy Back
(2) : Random Data Out On Plane 0 (Up to 4224Byte)
(3) : Random Data In On Plane 0 (Up to 4224Byte)
(4) : Random Data Out On Plane 1 (Up to 4224Byte)
(5) : Random Data In On Plane 1 (Up to 4224Byte)
(6): Two-Plane Program for Copy Back

Figure A-4. 2-Plane Copy-Back Program Operation with Ramdon Data Input

Note: 1. Copy-Back Program operation is allowed only within the same memory plane.

$\overline{W P}$ AC TIMING GUIDE

Enabling $\overline{\mathrm{WP}}$ during erase and program busy is prohibited. The erase and program operations are enabled and disabled as follows:

Figure B-1. Program Operation

1. Enable Mode

2. Disable Mode

Figure B-2. Erase Operation

1. Enable Mode

2. Disable Mode

[^0]: * Samsung Electronics reserves the right to change products or specification without notice.

