MINIATURE RELAY

2 POLES-1 to 2 A (for signal switching)

NA SERIES

FEATURES

- Slim type relay for high density mounting
- Conforms to Bellcore specification and FCC Part 68
-Dielectric strength 1,500 VAC between coil and contacts
-Surge strength $2,500 \mathrm{~V}$ between coil and contacts (at $2 \times$ 10 s surge wave)
- Maximum switching capability $-4.2 \mathrm{~A}, 700 \mathrm{VAC}$
- UL, CSA recognized
- High sensitivity and low consumption power
- High reliability-bifurcated contacts
- DIL pitch terminals
- Plastic sealed type
- RoHS compliant since date code: 0437B8 Please see page 7 for more information

ORDERING INFORMATION

[Example]
$\frac{N A}{(a)} \underset{(\mathrm{b})}{(*)} \frac{\mathrm{D}}{(\mathrm{c})} \frac{12}{(\mathrm{~d})} \frac{\mathrm{W}}{(\mathrm{e})}-\frac{\mathrm{K}}{(\mathrm{f})}$

(a)	Series Name	NA : NA Series
(b)	Operation Function	Nil $:$ Standard type L $:$ Latching type
(c)	Number of Coil	Nil $:$ Single winding type D $:$ Double winding type
(d)	Nominal Voltage	Refer to the COIL DATA CHART
(e)	Contact	W : Bifurcated type
(f)	Enclosure	K : Plastic sealed type

Note: Actual marking omits the hyphen (-) of (*)

SAFETY STANDARD AND FILE NUMBERS

UL508, 1950, 478 (File No. E45026)
C22.2 No. 0, No. 14, No. 950 (File No. LR35579)
Only UL/CSA approval markings are marked on the cover.

Nominal voltage	Contact rating		
	0.5 A	125 VAC	
1.5 to 48 VDC	2 A	30 VDC	resistive
	0.3 A	110 VDC	

SPECIFICATIONS

Item			Standard Type	Single Winding Latching Type		Double Winding Latching Type
			NA-() W-K	NAL-() W-K		NAL-D () W-K
Contact	Arrangement		2 form C (DPDT)			
	Material		Gold overlay silver alloy			
	Style		Bifurcated			
	Resistance (initial)		Maximum $50 \mathrm{~m} \Omega$ (at 1 A 6 VDC)			
	Rating (resistive)		0.5 A 125 VAC or 1 A 30 VDC			
	Maximum Carrying Current		2 A			
	Maximum Switching Power		62.5 AV, 30 W			
	Maximum Switching Voltage		250 VAC, 220 VDC			
	Maximum Switching Current		2 A			
	Minimum Switching Load*1		0.01 mA 10 mVDC			
	Capacitance		Approximately 0.5 pF (between open contacts, adjacent contacts) Approximately 1.0 pF (between coil and contacts)			
Coil	Nominal Power (at $20^{\circ} \mathrm{C}$)		0.14 to 0.3 W	0.1 t	5 W	0.20 to 0.3 W
	Operate Power (at $20^{\circ} \mathrm{C}$)		0.08 to 0.17 W	0.06	085 W	0.115 to 0.17 W
	Operating Temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (no frost)(refer to the CHARACTERISTIC DATA)			
Time Value	Operate (at nominal voltage)		Maximum 6 ms	Maximum 6 ms (set)		
	Release (at nominal voltage)		Maximum 4 ms	Maximum 6 ms (reset)		
Insulation	Resistance (at 500 VDC)		Minimum 1,000 M			
	Dielectric Strength	between open contacts	1,000 VAC 1 minute			
		between adjacent contacts	1,000 VAC 1 minute			
		between coil and contacts	1,500 VAC 1 minute			1,000 VAC 1 minute
	Surge Strength	between open contacts	$1,500 \mathrm{~V}$ (at $10 \times 700 \mu \mathrm{~s}$)			
		between adjacent contacts	$1,500 \mathrm{~V}$ (at $10 \times 700 \mu \mathrm{~s}$)			
		between coil and contacts	$2,500 \mathrm{~V}$ (at $2 \times 10 \mu \mathrm{~s}$)			$1,500 \mathrm{~V}$ (at $10 \times 160 \mu \mathrm{~s}$)
Life	Mechanical		1×10^{8} operations minimum $\quad 1 \times 10^{7}$ operations minimum			
	Electrical		$2 \times 10^{5} \mathrm{ops}$. min. (0.5 A 125 VAC), $5 \times 10^{5} \mathrm{ops}$. min. (1 A 30 VDC)			
Other	Vibration Resistance	Misoperation	10 to 55 Hz (double amplitude of 3.3 mm)			
		Endurance	10 to 55 Hz (double amplitude of 5.0 mm)			
	Shock Resistance	Misoperation	$500 \mathrm{~m} / \mathrm{s}^{2}(11 \pm 1 \mathrm{~ms})$			
		Endurance	$1,000 \mathrm{~m} / \mathrm{s}^{2}(6 \pm 1 \mathrm{~ms})$			
	Weight		Approximately 1.5 g			

*1 Minimum switching loads mentioned above are reference values. Please perform the confirmation test with the actual load before production since reference values may vary according to switching frequencies, environmental conditions and expected reliability levels.

COIL DATA CHART

MODEL		Nominal voltage	$\begin{aligned} & \text { Coil resistance } \\ & (\pm 10 \%) \end{aligned}$	Must operate voltage*1	Must release voltage*1	Nominal power
	NA-1.5 W-K	1.5 VDC	16.1Ω	+1.13 VDC	+0.15 VDC	140 mW
	NA- 3 W-K	3 VDC	64.3Ω	+2.25 VDC	+0.3 VDC	140 mW
	NA-4.5 W-K	4.5 VDC	145Ω	+3.38 VDC	+0.45 VDC	140 mW
	NA- 5 W-K	5 VDC	178Ω	+3.75 VDC	+0.5 VDC	140 mW
	NA- $6 \mathrm{~W}-\mathrm{K}$	6 VDC	257Ω	+4.5 VDC	+0.6 VDC	140 mW
	NA- 9 W-K	9 VDC	579Ω	+6.75 VDC	+0.9 VDC	140 mW
	NA-12 W-K	12 VDC	1,028 Ω	+9.0 VDC	+1.2 VDC	140 mW
	NA-18 W-K	18 VDC	1,620 Ω	+13.5 VDC	+1.8 VDC	200 mW
	NA-24 W-K	24 VDC	2,880 Ω	+18.0 VDC	+2.4 VDC	200 mW
	NA-48 W-K	48 VDC	7,680 Ω	+36.0 VDC	+4.8 VDC	300 mW

Note: *1 Specified values are subject to pulse wave voltage. All values in the table are measured at $20^{\circ} \mathrm{C}$.

MODEL		Nominal voltage	Coil resistance ($\pm 10 \%$)	Set voltage	Reset voltage	Nominal power
	NAL-1.5W-K	1.5 VDC	22.5Ω	+1.13 VDC	-1.13 VDC	100 mW
	NAL- 3 W-K	3 VDC	90Ω	+2.25 VDC	-2.25 VDC	100 mW
	NAL-4.5W-K	4.5 VDC	203Ω	+3.38 VDC	-3.38 VDC	100 mW
	NAL- $5 \mathrm{~W}-\mathrm{K}$	5 VDC	250Ω	+3.75 VDC	-3.75 VDC	100 mW
	NAL- 6 W-K	6 VDC	360Ω	+4.5 VDC	-4.5 VDC	100 mW
	NAL- 9 W-K	9 VDC	810Ω	+6.75 VDC	-6.75 VDC	100 mW
	NAL-12 W-K	12 VDC	1,440 Ω	+9.0 VDC	-9.0 VDC	100 mW
	NAL-18 W-K	18 VDC	2,160 Ω	+13.5 VDC	-13.5 VDC	150 mW
	NAL-24 W-K	24 VDC	3,840 Ω	+18.0 VDC	-18.0 VDC	150 mW
	NAL-D1.5W-K	1.5 VDC	P 11.25Ω	+1.13 VDC		200 mW
			S 11.25Ω		+1.13 VDC	
	NAL-D 3 W-K	3 VDC	P 45Ω	+2.25 VDC		200 mW
			S 45Ω		+2.25 VDC	
	NAL-D4.5W-K	4.5 VDC	P 101Ω	+3.38 VDC		200 mW
			S 101Ω		+3.38 VDC	
	NAL-D 5 W-K	5 VDC	P 125Ω	+3.75 VDC		200 mW
			S 125Ω		+3.75 VDC	
	NAL-D 6 W-K	6 VDC	P 180Ω	+4.5 VDC		200 mW
			S 180Ω		+4.5 VDC	
	NAL-D 9 W-K	9 VDC	P 405Ω	+6.75 VDC		200 mW
			S 405Ω		+6.75 VDC	
	NAL-D12 W-K	12 VDC	P 720Ω	+9.0 VDC		200 mW
			S 720Ω		+9.0 VDC	
	NAL-D18 W-K	18 VDC	P 1,080 Ω	+13.5 VDC		300 mW
			S 1,080 Ω		+13.5 VDC	
	NAL-D24 W-K	24 VDC	P 1,920 Ω	+18.0 VDC		300 mW
			S 1,920 Ω		+18.0 VDC	

Note: ${ }^{* 1}$ Specified values are subject to pulse wave voltage.
P: Primary coil S: Secondary coil
All values in the table are measured at $20^{\circ} \mathrm{C}$.

CHARACTERISTIC DATA

Contact Voltage(V)

High Frequency Characteristics

High Frequency Characteristics (Insertion Loss)

NA SERIES

REFERENCE DATA

■ DIMENSIONS

- Dimensions

- Schematics
(Bottom View)
- PC board mounting hole layout (Bottom View)

NA, NAL type (Non-latching type, single winding latching type)

NAL-D type (double winding latching type)

Reset condition

RoHS Compliance and Lead Free Relay Information
 1. General Information

- Relays produced after the specific date code that is indicated on each data sheet are lead-free now. Most of our signal and power relays are lead-free. Please refer to Lead-Free Status Info. (http://www.fcai.fujitsu.com/pdf/LeadFreeLetter.pdf)
- Lead free solder paste currently used in relays is $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$. From February 2005 forward Sn -3.0Cu-Ni will be used for FTRB3 and FTR-B4 series relays.
- Most signal and some power relays also comply with RoHS. Please refer to individual data sheets. Relays that are RoHS compliant do not contain the 6 hazardous materials that are restricted by RoHS directive (lead, mercury, cadmium, chromium IV, PBB, PBDE).
- It has been verified that using lead-free relays in leaded assembly process will not cause any problems (compatible).
- "LF" is marked on each outer and inner carton. (No marking on individual relays).
- To avoid leaded relays (for lead-free sample, etc.) please consult with area sales office.

We will ship leaded relays as long as the leaded relay inventory exists.

2. Recommended Lead Free Solder Profile

- Recommended solder paste Sn -3.0Ag-0.5Cu and Sn -3.0 Cu-Ni (only FTR-B3 and FTR-B4 from February 2005)

Reflow Solder condtion

Flow Solder condtion:
Pre-heating: maximum $120^{\circ} \mathrm{C}$ Soldering: dip within 5 sec . at $260^{\circ} \mathrm{C}$ soler bath

Solder by Soldering Iron:
Soldering Iron
Temperature: maximum $360^{\circ} \mathrm{C}$ Duration: maximum 3 sec .

We highly recommend that you confirm your actual solder conditions

3. Moisture Sensitivity

- Moisture Sensitivity Level standard is not applicable to electromechanical realys.

4. Tin Whisker

- SnAgCu solder is known as low riskof tin whisker. No considerable length whisker was found by our in-house test.

5. Solid State Relays

- Each lead terminal will be changed from solder plating to Sn plating and Nickel plating. A layer of Nickel plating is between the terminal and the Sn plating to avoid whisker.

NA SERIES

	Japan	Europe
	Fujitsu Component Limited	Fujitsu Components Europe B.V.
	Gotanda-Chuo Building	Diamantlaan 25
	3-5, Higashigotanda 2-chome, Shinagawa-ku	2132 WV Hoofddorp
Fujitsu Components	Tokyo 141, Japan	Netherlands
International	Tel: (81-3) 5449-7010	Tel: (31-23) 5560910
international	Fax: (81-3) 5449-2626	Fax: (31-23) 5560950
Headquarter	Email: promothq@ft.ed.fujitsu.com	Email: info@fceu.fujitsu.com
Headquarter	Web: www.fcl.fujitsu.com	Web: www.fceu.fujitsu.com
Offices	North and South America	Asia Pacific
	Fujitsu Components America, Inc.	Fujitsu Components Asia Ltd.
	250 E. Caribbean Drive	102E Pasir Panjang Road
	Sunnyvale, CA 94089 U.S.A.	\#04-01 Citilink Warehouse Complex
	Tel: (1-408) 745-4900	Singapore 118529
	Fax: (1-408) 745-4970	Tel: (65) 6375-8560
	Email: marcom@fcai.fujitsu.com	Fax: (65) 6273-3021
	Web: www.fcai.fujitsu.com	Email: fcal@fcal.fujitsu.com www.fcal.fuitsu.com

© 2005 Fujitsu Components America, Inc. All company and product names are trademarks or registered trademarks of their respective owners. Rev. 06/10/2005.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fujitsu:

