Intel[®] LXT385 Octal E1 Short-Haul PCM Transceiver with Jitter Attenuation (JA)

Product Features

- OctalE1 Pulse-Code Modulation (PCM) Transceiver with Jitter Attenuation for use in 2.048 Mbps (E1) applications
- 8 fully-independent receiver/transmitters
- Support for E1 standards:
 —Exceeds ETSI ETS 300 166
- Meets ETS 300 233Low-power single-rail 3.3-V CMOS power supply, with 5-V tolerant I/Os
- Jitter attenuation

- -Crystal-less
- -Digital clock recovery PLL
- Referenced to 2.048-MHz clock.
 Normal operation requires only MCLK.
 Does not require a reference clock frequency higher than the line frequency.
- —Can be switched between receive and transmit path
- -- Meets ETSI CTR12/13, ITU G.736, G.742, and G.823
- Optimized for Synchronous Digital Hierarchy (SDH) applications, meets ITU G.783 mapping jitter standard
- -Constant throughput delay
- Differential receiver architecture
 - High margin for noise interference
 Operates at >12 dB of cable attenuation
 - Operates at >12 ub of cable attenual
- Intel[®] Hitless Protection Switching
 - -Eliminates mechanical relays for redundancy 1+1 protection applications
 - -Increases quality of service

Applications

- SDH tributary interfaces
- Digital cross connects
- Public/private switching trunk line interfaces

- Transmitters
 - Transmit waveform shaping meets ITU G.703 specifications
 - Exceeds ETSI ETS 300 166 transmit return-loss specifications
 - Low-impedance transmit drivers, independent of transmit pattern and supply-voltage variations
 - Low-current transmit output option that can reduce power dissipation by up to 15%. By changing the LXT385 ransceiver output transformer ratio from 1:2 to 1:1.7, the savings occur whether TVCC is at 5 V or 3.3 V. 90 mW per channel (typical). See Table 62 "Intel[®] LXT385 Transceiver Power Consumption" on page 104 and Table 64 "Load³ Power Consumption" on page 105.
- HDB3 AMI line encoder/decoder
- LOS per ITU G.775 and ETS 300 233
- Diagnostics:
 - Can be configured for G.722-compliant, non-intrusive performance (protected) monitoring points
 - Industry-standard P1149.1 JTAG Boundary Scan test port
- Intel[®]/ Motorola* 8-bit parallel processor interface or 4 wire serial control interface
- Hardware and Software control modes
- Operating temperature -40 °C to 85 °C
- 160-ball BGA or 144-pin LQFP packages
 - Microwave transmission systems
 - M13, E1-E3 MUX

Datasheet

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel[®] LXT385 Octal E1 Short-Haul Pulse-Code Modulation Transceiver with Jitter Attenuation may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2001 - 2006 Intel Corporation

int_{el®} Contents

1.0	Intro	oduction to this Document	17
	1.1 1.2	Audience and Purpose Conventions and Terminology	
	1.2	Related Documents	
2.0	Proc	Juct Summary	19
3.0	Pin /	Assignments and Package	22
4.0	Mult	i-Function Pins	25
	4.1 4.2	Operating Mode Multi-Function Pins Framer/Mapper I/O Pins	
5.0	Sign	al Descriptions	29
	5.1	Signal Groupings	29
	5.2	Microprocessor-Standard Bus and Interface Signals	
	5.3	Framer/Mapper Signals	
		5.3.1 Bipolar vs. Unipolar Operation - Receive Side	
		5.3.2 Bipolar vs. Unipolar Operation - Transmit Side	
	F 4	5.3.3 Framer/Mapper Signals - Details	
	5.4	Line Interface Unit Signals	
	5.5 5.6	Clocks and Clock-Related Signals Configuration and Mode-Select Signals	
	5.7	Signal Loss and Line-Code-Violation Signals	
	5.8	Power and Grounds	
	5.9	Test Signals	
6.0		ctional Description	
	6.1	Functional Overview	
	6.2	Initialization and Reset	
	6.3	Receiver	
		6.3.1 Receiver Clocking	53
		6.3.2 Receiver Inputs	53
		6.3.3 Receiver Loss-Of-Signal Detector	54
		6.3.4 Receiver Data Recovery Mode	
		6.3.5 Receiver Alarm Indication Signal (AIS) Detection	
		6.3.6 Receive Alarm Indication Signal (RAIS) Enable	
		6.3.7 Receiver In-Service Line-Code-Violation Monitoring	
	6.4	Transmitter	
		6.4.1 Transmitter Clocking	
		6.4.2 Transmitter Pulse Shaping	
		6.4.3 Transmitter Outputs6.4.4 Transmitter Output Driver Power and Grounds	
	6.5	6.4.4 Transmitter Output Driver Power and Grounds	
	6.5 6.6	Jitter Attenuation	
	0.0		

	6.7	Loopbacks	67
		6.7.1 Analog Loopback	67
		6.7.2 Digital Loopback	
		6.7.3 Remote Loopback	
	6.8	Transmit All Ones Operations	
		6.8.1 TAOS Generation	
		6.8.2 TAOS Generation with Analog Loopback	
		6.8.3 TAOS Generation with Digital Loopback	
	6.9	Performance Monitoring	
	6.10	Intel [®] Hitless Protection Switching	
7.0	Oper	rating Mode Summary	74
	7.1	Interfacing with 5V Logic	74
	7.2	Hardware Mode	
	7.3	Hardware Mode Settings	
	7.4	Host Processor Modes	
		7.4.1 Host Processor Mode - Parallel Interface	
		7.4.2 Host Processor Mode - Serial Interface	
	7.5	Interrupt Handling	
		7.5.1 Interrupt Sources	
		7.5.2 Interrupt Enable	
		7.5.3 Interrupt Clear	79
8.0	Regi	sters	80
	8.1	Register Summary	80
	8.2	Register Addresses	
	8.3	Register Descriptions	83
9.0	JTAC	G Boundary Scan	91
	9.1	Overview	
	9.2	Architecture	
	9.3	TAP Controller	92
	9.4	JTAG Register Description	94
		9.4.1 Boundary Scan Register (BSR)	94
		9.4.2 Analog Port Scan Register (ASR)	
		9.4.3 Device Identification Register (IDR)	
		9.4.4 Bypass Register (BYR)	
		9.4.5 Instruction Register (IR)	100
10.0	Elect	trical Characteristics	101
11.0	Timi	ng Characteristics	
	11.1	Intel [®] LXT385 Transceiver Timing	
	11.2	Host Processor Mode - Parallel Interface Timing	
		11.2.1 Intel [®] Processor - Parallel Interface Timing	
		11.2.2 Motorola* Processor - Parallel Interface Timing	
	11.3	Host Processor Mode - Serial Interface Timing	123

Contents

intel®

12.0	Line-Interface-Unit Circuit Specifications	
13.0	Mask Specifications	126
14.0	Jitter Performance	
15.0	Recommendations and Specifications	
16.0	Mechanical Specifications	
	16.1 Top Label Markings	135
17.0	Product Ordering Information	136
18.0	Package Information	137
19.0	Abbreviations and Acronyms	

Figures

1	Related Documents	
2	Intel [®] LXT385 Transceiver Package Top-Side Markings	22
3	Operating Mode Selections	25
4	Operating Mode-Specific Signal Names	26
5	Receiver Bipolar/Unipolar I/O Signal Functions	27
6	Transmitter Bipolar/Unipolar I/O Signal Functions	28
7	Microprocessor-Standard Bus and Interface Signals	30
8	Framer/Mapper Receive Signals	35
9	Framer/Mapper Transmit Signals	37
10	Line Interface Unit Signals	40
11	Clocks and Clock-Related Signals	43
12	Configuration and Mode-Select Signals	45
13	Signal Loss and Line-Code-Violation Signals	47
14	Performance-Monitoring Selections with A3:0 Pins	48
15	Power and Grounds	
16	JTAG Analog Interface Test Signals	50
17	JTAG Digital Interface Test Signals	50
18	Component Values to Use with Transformer Circuit	
19	Transmitter Transformer Turns Ratio Selection	64
20	Intel [®] LXT385 Transceiver Hardware Mode Settings for Receive, Transmit,	
	and Loopback	
21	Host Processor Mode - Parallel Interface Selections	76
22	Intel [®] LXT385 Transceiver Register Summary	80
23	Register Bit Names	
24	Register Addresses for Serial and Parallel Interfaces	82
25	ID Register, ID - 00h	83
26	Analog Loopback Register, ALOOP - 01h	83
27	Remote Loopback Register, RLOOP - 02h	83
28	TAOS Enable Register, TAOS - 03h	83
29	LOS Status Monitor Register, LOS - 04h	84
30	DFM Status Monitor Register (05h) for Intel [®] LXT385 Transceiver	84
31	LOS Interrupt Enable Register, LIE - 06h	84
32	DFM Interrupt Enable Register, DIE (07h) for Intel® LXT385 Transceiver	84
33	LOS Interrupt Status Register, LIS - 08h	84

34	DFM Interrupt Status Register, LIS - 09h	84
35	Reset Register, RES - 0Ah	85
36	Performance-Monitoring Register, MON - 0Bh	86
37	Digital Loopback Register, DL - 0Ch	
38	LOS/AIS Criteria Selection Register, LACS - 0Dh	87
39	Automatic TAOS Select Register, ATS - 0Eh	
40	Global Control Register, GCR - 0Fh	88
41	Pulse Shaping Indirect Address Register, PSIAD (10h)	
42	Pulse Shaping Data Register, PSDAT (11h) for Intel® LXT385 Transceiver	89
43	Output Enable Register, OER - 12h	89
44	AIS Status Monitor Register, AIS - 13h	89
45	AIS Interrupt Enable Register, AISIE - 14h	89
46	AIS Interrupt Status Register, AISIS - 15h	90
47	TAP State Description	92
48	Boundary Scan Register (BSR)	94
49	Analog Port Scan Register (ASR)	99
50	Device Identification Register (IDR)	99
51	Instruction Register (IR)1	00
52	JTAG Timing Characteristics1	00
53	Absolute Maximum Ratings1	01
54	Recommended Operating Conditions1	02
55	Intel [®] LXT385 Transceiver Power Consumption1	
56	Load ³ Power Consumption1	04
57	DC Characteristics1	
58	Intel [®] LXT385 Transceiver AC Transmitter Characteristics	
59	Intel [®] LXT385 Transceiver AC Receiver Characteristics	
60	Intel [®] LXT385 Transceiver Transmit Timing Characteristics	
61	Intel [®] LXT385 Transceiver Receive Timing Characteristics	
62	Intel [®] Processor - Read Timing Characteristics1	
63	Intel [®] Processor - Write Timing Characteristics	
64	Motorola Processor - Read Timing Characteristics1	17
65	Motorola Processor - Write Timing Characteristics 1	20
66	Serial I/O Timing Characteristics1	23
67	Line-Interface-Unit Circuit Specifications1	25
68	Intel [®] LXT385 Transceiver Transformer Specifications1	25
69	ITU G.703 2.048 Mbit/s Pulse Mask Specifications1	
70	Intel® LXT385 Transceiver Jitter Attenuator Characteristics	27
71	Product Ordering Information1	
72	Abbreviations, Acronyms, and Meanings1	38

Tables

1	Related Documents	
2	Intel [®] LXT385 Transceiver Package Top-Side Markings	
3	Operating Mode Selections	
4	Operating Mode-Specific Signal Names	
5	Receiver Bipolar/Unipolar I/O Signal Functions	27
6	Transmitter Bipolar/Unipolar I/O Signal Functions	
7	Microprocessor-Standard Bus and Interface Signals	
8	Framer/Mapper Receive Signals	
9	Framer/Mapper Transmit Signals	

10	Line Interface Unit Signals	.40
11	Clocks and Clock-Related Signals	.43
12	Configuration and Mode-Select Signals	.45
13	Signal Loss and Line-Code-Violation Signals	
14	Performance-Monitoring Selections with A3:0 Pins	
15	Power and Grounds	
16	JTAG Analog Interface Test Signals	
17	JTAG Digital Interface Test Signals	
18	Component Values to Use with Transformer Circuit	
19	Transmitter Transformer Turns Ratio Selection	
20	Intel [®] LXT385 Transceiver Hardware Mode Settings for Receive, Transmit,	
	and Loopback	.75
21	Host Processor Mode - Parallel Interface Selections	.76
22	Intel [®] LXT385 Transceiver Register Summary	
23	Register Bit Names	
24	Register Addresses for Serial and Parallel Interfaces	
25	ID Register, ID - 00h	
26	Analog Loopback Register, ALOOP - 01h	
27	Remote Loopback Register, RLOOP - 02h	
28	TAOS Enable Register, TAOS - 03h	
29	LOS Status Monitor Register, LOS - 04h	
30	DFM Status Monitor Register (05h) for Intel [®] LXT385 Transceiver	84
31	LOS Interrupt Enable Register, LIE - 06h	84
32	DFM Interrupt Enable Register, DIE (07h) for Intel [®] LXT385 Transceiver	84
33	LOS Interrupt Status Register, LIS - 08h	
34	DFM Interrupt Status Register, LIS - 09h	
35	Reset Register, RES - 0Ah	
36	Performance-Monitoring Register, MON - 0Bh	
37	Digital Loopback Register, DL - 0Ch	
38	LOS/AIS Criteria Selection Register, LACS - 0Dh	
30 39	0	
	Automatic TAOS Select Register, ATS - 0Eh	
40	Global Control Register, GCR - 0Fh	
41	Pulse Shaping Indirect Address Register, PSIAD (10h)	
42	Pulse Shaping Data Register, PSDAT (11h) for Intel [®] LXT385 Transceiver	
43	Output Enable Register, OER - 12h	
44	AIS Status Monitor Register, AIS - 13h	
45	AIS Interrupt Enable Register, AISIE - 14h	
46	AIS Interrupt Status Register, AISIS - 15h	
47	TAP State Description	
48	Boundary Scan Register (BSR)	
49	Analog Port Scan Register (ASR)	
50	Device Identification Register (IDR)	
51	Instruction Register (IR)	
52	JTAG Timing Characteristics	
53	Absolute Maximum Ratings	
54	Recommended Operating Conditions	
55	Intel [®] LXT385 Transceiver Power Consumption	103
56	Load ³ Power Consumption	
57	DC Characteristics	
58	Intel [®] LXT385 Transceiver AC Transmitter Characteristics	106

Intel [®] LXT385 Transceiver AC Receiver Characteristics	
Intel [®] LXT385 Transceiver Transmit Timing Characteristics	
Intel [®] LXT385 Transceiver Receive Timing Characteristics	110
Intel [®] Processor - Read Timing Characteristics	111
Intel [®] Processor - Write Timing Characteristics	114
Motorola Processor - Read Timing Characteristics	117
Motorola Processor - Write Timing Characteristics	120
Serial I/O Timing Characteristics.	123
Line-Interface-Unit Circuit Specifications	125
Intel [®] LXT385 Transceiver Transformer Specifications	125
ITU G.703 2.048 Mbit/s Pulse Mask Specifications	126
Intel [®] LXT385 Transceiver Jitter Attenuator Characteristics	127
Product Ordering Information	
Abbreviations, Acronyms, and Meanings	
	Intel [®] LXT385 Transceiver AC Receiver Characteristics Intel [®] LXT385 Transceiver Transmit Timing Characteristics Intel [®] LXT385 Transceiver Receive Timing Characteristics Intel [®] Processor - Read Timing Characteristics Intel [®] Processor - Write Timing Characteristics Motorola Processor - Read Timing Characteristics Motorola Processor - Write Timing Characteristics Serial I/O Timing Characteristics Line-Interface-Unit Circuit Specifications Intel [®] LXT385 Transceiver Transformer Specifications ITU G.703 2.048 Mbit/s Pulse Mask Specifications Intel [®] LXT385 Transceiver Jitter Attenuator Characteristics Product Ordering Information Abbreviations, Acronyms, and Meanings

Revision History

Intel [®] LXT385 Transceiver - Revision 006 Revision Date: January 2006	
Page Number	Description
135	Added Figure 37 "Sample LQFP Non-RoHS Package - Intel® DJLXT385LE Transceiver"
135	Added Figure 38 "Sample LQFP RoHS Package - Intel® WJLXT385LE Transceiver"
136	Added LXT385 product and revision numbers, etc. to Table 71 "Product Ordering Information"
137	Added Figure 39 "Ordering Information Matrix – Sample"

Intel [®] LXT385 Transceiver - Revision 005 Revision Date: December 2006		
Page Description		
17	17 Changed text in Chapter 1.0, "Audience and Purpose"	

	Intel [®] LXT385 Transceiver - Revision 004 July 2004	
Page Number	Description	
	Major editing/rewriting/reorganizing, based on results of extensive testing of this device, and on customer feedback about how the device is actually used.	
	The focus of these rewrites was to improve accuracy of documentation, and to improve the logical flow of information from one section to the next.	

	Intel [®] LXT385 Transceiver - Revision 003 - (Sheet 1 of 5) Revision Date: August 22, 2003	
Page Number	Description	
1	Front page changed.	
1	Old Chapter 1, "Features", is new Product Features on page 1. Text changed.	
9	New Chapter 1.0, "Introduction to this Document" added.	
9	OK Old Chapter 1.0, "Features", changed to new Chapter 1.0, "Features and Related Documents".	
9	OK New Section 1.1, "Features". Added bullet on low-power option.	
9	OK New Section 1.2, "Related Documents" added, and added new Table 1, "Related Documents".	
11	New Chapter 2.0, "Product Summary" added.	
15	Old Chapter 2, "Pin Assignments and Package Descriptions" re-numbered and re-titled to new Chapter 3.0, "Pin Assignments and Package". Signal descriptions previously in old Chapter 2 moved to new Chapter 5.0, "Signal Descriptions". Text changed and text added.	
20	New Chapter 4.0, "Multi-Function Pins" added.	

	Intel [®] LXT385 Transceiver - Revision 003 - (Sheet 2 of 5) Revision Date: August 22, 2003							
24	New Chapter 5.0, "Signal Descriptions". Old Table 1, "Intel [®] LXT385 Transceiver Pin Description", that was previously in old Chapter 2 moved to new Chapter 5.0, "Signal Descriptions" and divided into multiple tables.							
24	New Section 5.1, "Signal Groupings".							
25	New Section 5.2, "Microprocessor-Standard Bus and Interface Signals", added from old Chapt 2. Table text changed.							
26	OK Section 3.1, "Initialization". Text changed.							
26	Section 3.1, "Receiver". Text changed.							
27	Section 3.2.1, "Loss of Signal Detector". Text changed.							
27	Section 3.2.1.1, "G.755 and ETSI 300 233 - Loss of Signal Detection". Text changed.							
28	New Section 5.3, "Framer/Mapper Signals", added from old Chapter 2. Table text changed.							
29	Section 3.3, "Transmitter". Text changed.							
30	Section 3.4, "Transmitter Output Driver Power and Grounds". Text changed.							
30	Section 3.5, "Line-Interface Protection". Text changed. Figure 6, "External Transmit/Receive Line Interface Circuitry", changed. Added new text and new table, Table 3, "Component Value to Use with Transformer Circuit".							
33	Section 3.7, "Jitter Attenuation". Figure 7, "Jitter Attenuator Loop", changed.							
34	Section 3.8.1, "Analog Loopback". Figure 8, "Analog Loopback", changed.							
34	Section 3.8.2, "Digital Loopback". Figure 9, "Digital Loopback", changed.							
35	Section 3.8.3, "Remote Loopback". Figure 10, "Remote Loopback", changed.							
35	New Section 5.4, "Line Interface Unit Signals", added from old Chapter 2. Table text changed							
37	Section 3.10, "Intel [®] Hitless Protection Switching". Text changed.							
38	New Section 5.5, "Clocks and Clock-Related Signals", added from old Chapter 2. Table text changed.							
40	New Section 5.6, "Configuration and Mode-Select Signals", added from old Chapter 2. Table to changed.							
42	New Section 5.7, "Signal Loss and Line-Code-Violation Signals", added from old Chapter 2. Table text changed.							
44	New Section 5.8, "Power and Grounds", added from old Chapter 2. Table text changed.							
45	New Section 5.9, "Test Signals", added from old Chapter 2. Table text changed.							
47	Old Chapter 3.0, "Functional Description", re-numbered to new Chapter 6.0, "Functional Description".							
48	Information at beginning of old Chapter 3.0, "Functional Description", re-numbered to new Section 6.1, "Functional Overview".							
48	Old Section 3.1, "Initialization", and old Section 3.1.1, "Reset Operation", combined and move to new Section 6.2, "Initialization and Reset", and text changed.							
49	Information from old Section 3.2, "Receiver", moved to new Section 6.3.1, "Receiver Clocking and text changed.							
49	Old Section 3.2, "Receiver", re-numbered to Section 6.3, "Receiver", and text moved to new sections.							
49	Information from old Section 3.2, "Receiver", re-numbered to new Section 6.3.2, "Receiver Inputs", and text changed.							
49	Chapter 6.0, "Test Specifications". Table 27, "Recommended Operating Conditions". Table te changed.							
49	Chapter 6.0, "Test Specifications". Table 28, "Power Consumption". Table text changed.							
50	Chapter 6.0, "Test Specifications". Table 29, "DC Characteristics". Table text changed.							

	Intel [®] LXT385 Transceiver - Revision 003 - (Sheet 3 of 5) Revision Date: August 22, 2003
50	Information from old Section 3.2.1, "Loss of Signal Detector", re-numbered to new Section 6.3.3, "Receiver Loss-Of-Signal Detector", and text changed.
50	Information from old Section 3.2.1, "Loss of Signal Detector", re-numbered to new Section 6.3.3, "Receiver Loss-Of-Signal Detector", and text changed.
51	Information from old Section 3.2.1.2, "Data Recovery Mode", re-numbered to new Section 6.3.4, "Receiver Data Recovery Mode", and text changed.
51	Old Section 3.2.2, "Alarm Indication Signal AIS Detection", re-numbered to new Section 6.3.5, "Receiver Alarm Indication Signal (AIS) Detection", and text changed.
51	Old Section 3.2.3, "Receiver Alarm Indication Signal (RAIS)", re-numbered to new Section 6.3.6, "Receive Alarm Indication Signal (RAIS) Enable", and text changed.
52	Old Section 3.2.4, "In-Service Code-Violation Monitoring", re-numbered to new Section 6.3.7, "Receiver In-Service Line-Code-Violation Monitoring", and text changed.
53	Old Section 3.3, "Transmitter", re-numbered to new Section 6.4, "Transmitter".
53	Information from old Section 3.3, "Transmitter", moved to new Section 6.4.1, "Transmitter Clocking", and text changed.
54	Information about TCLK description from old Section 2.0, "Pin Assignments and Pin Descriptions", Table 1, "Intel [®] LXT385 Transceiver Pin Descriptions", and information from old Section 3.3, "Transmitter", moved to new Section 6.4.2, "Transmitter Pulse Shaping", and text changed.
56	Information from old Section 3.3, "Transmitter", and old Section 3.3.0.1, "Output Driver Power Supply", moved to new Section 6.4.3, "Transmitter Outputs", and text changed.
57	Information from old Section 3.3, "Transmitter", old Section 3.3.0.1, "Output Driver Power Supply", and old Section 3.3.0.2, "Power Sequencing", moved to new Section 6.4.4, "Transmitter Output Driver Power and Grounds", and text changed.
58	Old Section 3.4, "Line Protection", re-numbered and re-titled to new Section 6.5, "Line-Interface Protection", and text changed. Old Figure 6, "External Transmit/Receiver Line Circuitry", included with new Section 6.5, "Line-Interface Protection", and figure changed.
62	Old Section 3.5, "Jitter Attenuation", re-numbered to new Section 6.6, "Jitter Attenuation", and text changed.
64	Old Section 3.6, "Loopbacks", re-numbered to new Section 6.7, "Loopbacks", and text changed
64	Old Section 3.6.1, "Analog Loopback", re-numbered to new Section 6.7.1, "Analog Loopback", and text changed.
66	Old Section 3.6.2, "Digital Loopback", re-numbered to new Section 6.7.2, "Digital Loopback", and text changed.
67	Old Section 3.6.3, "Remote Loopback", re-numbered to new Section 6.7.3, "Remote Loopback" and text changed.
68	Information from old Section 3.6.4, "Transmit All Ones (TAOS)", re-numbered to new Section 6.8.1, "TAOS Generation". Text changed, and title of old Figure 11, "TAOS Data Path" changed to new Figure 18 "TAOS Generation for Intel [®] LXT385 Transceiver".
68	Old Table 3, "Operating Mode Summary", in old Chapter 4.0, "Operation Mode Summary", moved to new Section 7.3, "Hardware Mode Settings" and re-numbered and re-titled to new Table 20, "Hardware Settings for Receive, Transmit, and Loopback Operating Modes". Table text changed.
69	New Section 8.4, "Host Processor Modes", added.
69	Old Section 4.2, "Parallel Host Interface", changed to new Section 8.4.1, "Host Processor Mode - Parallel Interface", and text changed.
70	Old Section 4.2.1, "Motorola Interface", changed to new Section 8.4.1.1, "Host Processor Mode - Parallel Interface, Motorola Processor", and text changed.
70	Old Section 4.2.2, "Intel Interface", changed to new Section 8.4.1.2, "Host Processor Mode - Parallel Interface, Intel [®] Processor". Text and table changed.

	Intel [®] LXT385 Transceiver - Revision 003 - (Sheet 4 of 5) Revision Date: August 22, 2003						
70	Information from old Section 3.6.4, "Transmit All Ones (TAOS)", moved to new Section 6.8.3, "TAOS Generation with Digital Loopback", and added new Figure 22 "TAOS Generation with Digital Loopback for Intel [®] LXT385 Transceiver".						
71	Old Section 4.4, "Serial Host Mode", changed to new Section 8.4.2, "Host Processor Mode - Serial Interface". Text changed.						
71	Old Section 4.4, "Serial Host Mode", changed to new Section 8.4.2, "Host Processor Mode - Serial Interface". Old Table 13, "Serial Host Mode Timing" changed to Figure 14, "Host Processor Mode - Serial Interface Read Timing".						
72	Old Section 3.7, "G.772 Performance Monitoring", changed to new Section 6.9, "Performance Monitoring".						
72	Old Section 4.3, "Interrupt Handling", changed to new Section 8.5, "Interrupt Handling".						
72	Old Section 4.3.1, "Interrupt Sources", changed to new Section 8.5.1, "Interrupt Sources", and text changed.						
72	Old Section 4.3.2, "Interrupt Enable", changed to new Section 8.5.2, "Interrupt Enable", and text changed.						
72	Old Section 4.3.3, "Interrupt Clear", changed to new Section 8.5.3, "Interrupt Clear", and text changed.						
73	Old Chapter 5.0, "Register Descriptions", changed to new Chapter 9.0, "Registers".						
73	New Section 9.1, "Register Summary", and new Table 22, "Intel [®] LXT385 Transceiver Register Summary", added. Old Table 6, "Register Bit Names", moved to this section and changed to new Table 23, "Register Bit Names". Table text changed.						
73	Information from old Section 3.5, "Jitter Attenuation", and old Section 3.8, "Intel [®] Hitless Protection Switching moved to new Section 6.10, "Intel [®] Hitless Protection Switching", and text changed.						
74	Old Chapter 4.0, "Operation Mode Summary", re-numbered to new Chapter 7.0, "Operating Mode Summary", and text changed.						
74	New Section 7.2, "Hardware Mode", added.						
75	New Section 9.2, "Register Addresses", added, along with new text. Old Table 5, "Serial and Parallel Port Register Addresses", moved to new Section 9.2, "Register Addresses" as Table 24, "Register Address for Serial and Parallel Interfaces", and table text changed.						
76	New Section 9.3, "Register Descriptions", added. Tables 7 through 23 from old Chapter 5.0, "Register Descriptions", moved to new Section 9.3.						
76	Old Table 7, "ID Register, ID (00h)", changed to new Table 25, "ID Register, ID - 00h", and table text changed.						
76	Old Table 10, "TAOS Enable Register, TAOS (03h)", changed to new Table 28, "TAOS Enable Register, TAOS - 03h", and table text changed.						
77	Old Table 11, "LOS Status Monitor Register, LOS (04h)", changed to new Table 29, "LOS Status Monitor Register, LOS - 04h", and table text changed.						
77	Old Table 14, "Software Reset Register, RES (0Ah)", changed to new Table 32, "Reset Register, RES - 0Ah", and table text changed.						
78	Old Table 15, "Performance-Monitoring Register, MON (0Bh)", changed to new Table 33, "Performance-Monitoring Register, MON - 0Bh". Added text before the table.						
-	Removed old Chapter 6.0, "JTAG Boundary Scan".						
79	Old Chapter 7.0, "Test Specifications", changed to new Chapter 10.0, "Electrical Characteristics", and introductory text changed.						
79	Old Table 17, "LOS/AIS Criteria Register, LCS (0Dh)", changed to new Table 35, "LOS/AIS Criteria Selection Register, LACS - 0Dh", and table text changed.						
79	Old Table 18, "Automatic TAOS Select Register, ATS (OEh)", changed to new Table 36, "Automatic TAOS Select Register, ATS - 0Eh", and table text changed.						

	Intel [®] LXT385 Transceiver - Revision 003 - (Sheet 5 of 5) Revision Date: August 22, 2003
80	Old Table 19, "Global Control Register, GCR (0Fh)", changed to new Table 37, "Global Control Register, GCR - 0Fh" and table text changed. Old Figure 5, "AMI 50% AMI Encoding", moved to new Table 37.
81	Old Table 23, "AIS Interrupt Status Register, AISIS (15h)", changed to new Table 41, "AIS Interrupt Status Register, AISIS - 15h", and table text changed.
82	New Chapter 10.0, "Electrical Characteristics". Old Table 29, "Absolute Maximum Ratings", changed to new Table 42, "Absolute Maximum Ratings", and table text changed.
83	New Chapter 10.0, "Electrical Characteristics". Old Table 30, "Recommended Operating Conditions", changed to new Table 43, "Recommended Operating Conditions", and table text changed.
83	New Chapter 10.0, "Electrical Characteristics". New Table 44, "Power Consumption", added.
84	Old Table 31, "DC Characteristics", changed to new Table 45, "DC Characteristics", and table text changed.
-	Old Table 35, "Analog Test Port Characteristics", removed.
85	Information from old Chapter 7.0, "Test Specifications", moved to new Section 11.1, "Intel [®] LXT385 Transceiver Timing", and text in tables changed.
85	Old Table 32, "E1 Transmit Transmission Characteristics", changed to new Table 46, "AC Transmitter Characteristics", and table text changed.
86	Old Table 33, "E1 Receive Transmission Characteristics", changed to new Table 47, "AC Receiver Characteristics", and table text changed.
87	Information from old Chapter 7.0, "Test Specifications", moved to new Chapter 11.0, "Timing Characteristics".
90	Information from old Chapter 7.0, "Test Specification", moved to new Section 11.2, "Host Processor Mode - Parallel Interface Timing".
90	Information from old Chapter 7.0, "Test Specifications", moved to new Section 11.2.1, "Intel [®] Processor - Parallel Interface Timing", and text in tables changed.
96	Information from old Chapter 7.0, "Test Specifications", moved to new Section 11.2.2, "Motorola Processor - Parallel Interface Timing", and text in tables changed.
102	Information from old Chapter 7.0, "Test Specifications", moved to new Section 11.3, "Host Processor Mode - Serial Interface Timing", and text in tables changed.
104	Information from old Chapter 7.0, "Test Specifications", moved to new Chapter 12.0, "Line Interface Unit Circuit Specifications". New information also added.
105	Information from old Chapter 7.0, "Test Specifications", moved to new Chapter 13.0, "Mask Specifications". Table text changed.
106	Information from old Chapter 7.0, "Test Specifications", moved to new Chapter 14.0, "Jitter Performance". Text in tables and figures changed.
110	Information from old Chapter 7.0, "Test Specifications", moved to new Chapter 15.0, "Recommendations and Specifications", and text changed.
112	Information from old Chapter 7.0, "Test Specifications", moved to new Chapter 16.0, "Mechanical Specifications".

Intel [®] LXT385 Transceiver - Revision 002 (Sheet 1 of 2) August 15, 2003					
Page Description					
10	Old Figure 1, "LXT Block Diagram", changed to new Figure 1, "Intel® LXT385 Transceiver High-Level Block Diagram".				
25	Section 3.1, "Initialization". Text changed.				

Contents

Intel [®] LXT385 Transceiver - Revision 002 (Sheet 2 of 2) August 15, 2003								
Page Number	Description							
26	Section 3.2, "Receiver". Text changed.							
27	Old section 3.2.1.1, "E1 Mode" title changed to new Section 3.2.1.1, "G.755 and ETSI 300 233 - Loss of Signal Detector".							
-	Old section 3.2.2.1, "E1 Mode" title was deleted.							
28	Section 3.3, "Transmitter". Text changed.							
28	Old Section 3.3.01, "Output Driver Power Supply", changed to new Section 3.4, "Transmitter Output Driver Power and Grounds.							
-	Old Section 3.3.02, "Power Sequencing", was deleted.							
29	New titled section, Section 3.5, "Line-Interface Protection", was added. Figure 6, "External Transmit/Receive Line Circuitry", changed. Text added.							
30	Old Section 3.5, "Jitter Attenuation", changed to new Section 3.7, "Jitter Attenuation". Text changed.							
31	Figure 7, "Jitter Attenuator Loop". Figure changed.							
32	Figure 8, "Analog Loopback". Figure changed.							
33	Figure 9, "Digital Loopback". Figure changed.							
33	Figure 10, "Remote Loopback". Figure changed.							
34	Figure 11 "TAOS Data Path." Figure changed.							
34	Figure 12, "TAOS with Analog Loopback". Figure changed.							
41	Old Section 4.4, "Serial Host Mode", changed to new Section 4.3.4, "Host Processor Mode - Serial Interface". Text changed. Old Figure 13, "Serial Host Mode Timing", changed to new Figure 13, "Host Processor Mode -							
	Serial Interface Read Timing".							
-	Old Chapter 6.0, "JTAG Boundary Scan". Entire chapter removed.							
48	Old Table 30, "Recommended Operating Conditions", changed to new Table 25, "Recommended Operating Conditions", and table text changed.							
48	Added new Table 26, "Power Consumption".							
49	Old Table 32, "E1 Transmit Transmission Characteristics", changed to new Table 28, "Transmit Transmission Characteristics".							
50	Old Table 33, "E1 Receive Transmission Characteristics", changed to new Table 29, "Receive Transmission Characteristics". Table text changed.							
51	Old Table 34, "Jitter Attenuator Characteristics", changed to new Table 30, "Jitter Attenuator Characteristics". Table text changed.							
52	Old Table 36, "Transmit Timing Characteristics", changed to new Table 32, "Transmit Timing Characteristics". Table text changed.							
52	Old Table 37, "Receive Timing Characteristics", changed to new Table 33, "Receive Timing Characteristics". Table text changed.							
-	Old Table 38, "JTAG Timing Characteristics", deleted.							
-	Old Figure 19, "JTAG Timing", deleted.							
63	Old Figure 30, "E1, G703 Mask Templates", changed to Figure 26, "E1, G703 Mask Templates", and figure text changed.							
65	Old Figure 32, "Intel [®] LXT385 Transceiver Jitter Transfer Performance", changed to new Figure 28, "Intel [®] LXT385 Transceiver Jitter Transfer Performance". Figure changed.							

	Intel [®] LXT385 Transceiver - Revision 002 August 15, 2003							
Page Number	Description							
10	Old Figure 1, "LXT Block Diagram", changed to new Figure 1, "Intel® LXT385 Transceiver High-Level Block Diagram".							
25	Section 3.1, "Initialization". Text changed.							
26	Section 3.2, "Receiver". Text changed.							
27	Old section 3.2.1.1, "E1 Mode" title changed to new Section 3.2.1.1, "G.755 and ETSI 300 233 - Loss of Signal Detector".							
-	Old section 3.2.2.1, "E1 Mode" title was deleted.							
28	Section 3.3, "Transmitter". Text changed.							
28	Old Section 3.3.01, "Output Driver Power Supply", changed to new Section 3.4, "Transmitter Output Driver Power and Grounds.							
-	Old Section 3.3.02, "Power Sequencing", was deleted.							
29	New titled section, Section 3.5, "Line-Interface Protection", was added. Figure 6, "External Transmit/Receive Line Circuitry", changed. Text added.							
30	Old Section 3.5, "Jitter Attenuation", changed to new Section 3.7, "Jitter Attenuation". Text changed.							
31	Figure 7, "Jitter Attenuator Loop". Figure changed.							
32	Figure 8, "Analog Loopback". Figure changed.							
33	Figure 9, "Digital Loopback". Figure changed.							
33	Figure 10, "Remote Loopback". Figure changed.							
34	Figure 11 "TAOS Data Path." Figure changed.							
34	Figure 12, "TAOS with Analog Loopback". Figure changed.							
41	Old Section 4.4, "Serial Host Mode", changed to new Section 4.3.4, "Host Processor Mode - Serial Interface". Text changed.							
	Old Figure 13, "Serial Host Mode Timing", changed to new Figure 13, "Host Processor Mode Serial Interface Read Timing".							
-	Old Chapter 6.0, "JTAG Boundary Scan". Entire chapter removed.							
48	Old Table 30, "Recommended Operating Conditions", changed to new Table 25, "Recommended Operating Conditions", and table text changed.							
48	Added new Table 26, "Power Consumption".							
49	Old Table 32, "E1 Transmit Transmission Characteristics", changed to new Table 28, "Transm Transmission Characteristics".							
50	Old Table 33, "E1 Receive Transmission Characteristics", changed to new Table 29, "Receive Transmission Characteristics". Table text changed.							
51	Old Table 34, "Jitter Attenuator Characteristics", changed to new Table 30, "Jitter Attenuator Characteristics". Table text changed.							
52	Old Table 36, "Transmit Timing Characteristics", changed to new Table 32, "Transmit Timing Characteristics". Table text changed.							
52	Old Table 37, "Receive Timing Characteristics", changed to new Table 33, "Receive Timing Characteristics". Table text changed.							
-	Old Table 38, "JTAG Timing Characteristics", deleted.							
-	Old Figure 19, "JTAG Timing", deleted.							
63	Old Figure 30, "E1, G703 Mask Templates", changed to Figure 26, "E1, G703 Mask Templates", and figure text changed.							
65	Old Figure 32, "Intel [®] LXT385 Transceiver Jitter Transfer Performance", changed to new Fig ure 28, "Intel [®] LXT385 Transceiver Jitter Transfer Performance". Figure changed.							

Intel [®] LXT385 Transceiver - Revision 001 Revision Date: January 2001					
Page Number	Description				
-	Initial release.				

1.0 Introduction to this Document

1.1 Audience and Purpose

The audience for this document is design engineers.

The purpose of this document is to provide design information about the Intel[®] LXT385 Octal Short-Haul Pulse-Code Modulation Transceiver with Jitter Attenuation (called hereafter the LXT385 ransceiver).

The rest of this document is organized as follows:

- Chapter 2.0, "Product Summary"
- Chapter 3.0, "Pin Assignments and Package"
- Chapter 4.0, "Multi-Function Pins"
- Chapter 5.0, "Signal Descriptions"
- Chapter 6.0, "Functional Description"
- Chapter 7.0, "Operating Mode Summary"
- Chapter 8.0, "Registers"
- Chapter 9.0, "JTAG Boundary Scan"
- Chapter 10.0, "Electrical Characteristics"
- Chapter 11.0, "Timing Characteristics"
- Chapter 12.0, "Line-Interface-Unit Circuit Specifications"
- Chapter 13.0, "Mask Specifications"
- Chapter 14.0, "Jitter Performance"
- Chapter 15.0, "Recommendations and Specifications"
- Chapter 16.0, "Mechanical Specifications"
- Chapter 17.0, "Product Ordering Information"
- Chapter 18.0, "Package Information"
- Chapter 19.0, "Abbreviations and Acronyms"

1.2 Conventions and Terminology

Balls and pins. This document discusses two packages, both a low-profile octal-flat package (an LQFP, which uses pins for signals) and a pin ball-grid array (a PBGA, which uses balls for signals). In this document the term 'pin' refers to either a ball or a pin.

Mark. An analog AMI (Alternate Mark Inversion) line-interface signal, containing a digital logic 1. The mark is either a negative or a positive pulse.

Recovered Clock. A clock that is not generated, but is instead derived from received data on a transceiver. The RTIP/RRING received signal is used to generate RCLK on the transceiver.

 $\mathbf{X} =$ Don't care.

1.3 Related Documents

Table 1 lists related documents for both the LXT385 Transceiver and the LXT384 Transceiver.

- Use the Intel[®] LXT384 Transceiver for either E1 or T1 applications.
- The Intel[®] LXT385 Transceiver supports the E1 standard only.

Table 1. Related Documents

1+1 Protection without Relays Using Intel [®] LXT380/1/4/6/8 Hitless Protection Switching - Application Note	249464
Intel [®] LXD384 - Evaluation Board for Octal T1/E1 Applications - Developer Manual	249214
Intel [®] LXT380/1/4/6/8 Redundancy Applications - Application Note	249134
Intel [®] LXT380/4 Octal T1/E1 LIUs - Interfacing with the Transwitch Octal Framers - Application Note	249136
Intel [®] LXT384 Octal LIU and Intel [®] LXT385 Octal PCM Transceiver Solutions for Slow Power-Up Rise Time - Application Note	253721
Intel [®] LXT384/6/8 Frequently Asked Questions	249183
Intel® LXT384/6/8 Twisted Pair Interface - Without Component Changes - Application Note	249138
Intel [®] LXT384/6/8 Universal 75/100/120 Ohm Interface	251364
T1/E1/J1, N+1 Redundancy with Analog Switches and Intel [®] LXT3x Line Interface Units - Preliminary Application Note	278832
Transformer Specification for Intel [®] Transceiver Applications - Application Note	249133

2.0 Product Summary

The LXT385 Transceiver is designed for use in 2.048-Mbps applications. It incorporates eight independent receivers and eight independent transmitters in either a single 144-pin LQFP or a 160-ball PBGA package.

Transmitters. The LXT385 transceiver transmits shaped waveforms that meet ITU G.703 specifications. The transmit drivers provide low impedance, independent of supply-voltage variation and transmit patterns. The output of the transmitters is stable over a variety of loads. The transmit return loss for the LXT385 transceiver exceeds typical specifications such as ETSI ETS 300 166. All transmitters have a power-down mode with the capability for a fast transition to an output high-impedance tristate.

Power Savings. The Intel[®] transmit output design allows you to use the transmitter output of the LXT385 ransceiver in a broad range of applications, while maintaining circuit stability. As a result, the LXT385 ransceiver can offer a low-current transmit output option that can reduce power dissipation by up to 15%. By changing the LXT385 ransceiver output transformer ratio from 1:2 to 1:1.7, the savings occur whether TVCC is at 5V or 3.3V.

Receivers. The LXT385ransceiver has a differential receiver architecture that provides a high noise-interference margin so that the receivers can operate well beyond 12 dB of cable attenuation.

Jitter Attenuation. The LXT385ransceiver incorporates a crystal-less jitter attenuator that can be switched to work inside either the receive or the transmit path, or it can be disabled entirely. The jitter-attenuation performance, optimized for synchronous digital hierarchy (SDH) applications, meets typical international specifications such as ETSI CTR12/13.

Performance Monitoring. You can configure the LXT385ransceiver for non-intrusive performance monitoring (also known as 'protected monitoring') that is compliant with ITU G.772.

Intel[®] Hitless Protection Switching. The LXT385ransceiver can operate in an Intel[®] Hitless Protection Switching mode, which uses one transceiver to back up another, in case the primary transceiver fails. This method is often referred to as 1+1 redundancy protection. Typical redundancy methods used external relays. Intel[®] Hitless Protection Switching is a solid-state solution, which reduces bit errors that can occur when using external relays for redundancy protection. This mode uses two LXT385ransceivers in parallel, with one LXT385ransceiver powered on, while the other LXT385ransceiver is in standby mode. As a result, one LXT385ransceiver backs up another LXT385ransceiver. See the *1+1 Protection without Relays Using Intel[®] LXT380/1/4/6/8 Hitless Protection Switching - Application Note.*

Figure 1 is a high-level block diagram of the LXT385ransceiver.

Figure 1. Intel[®] LXT385 Transceiver High-Level Block Diagram

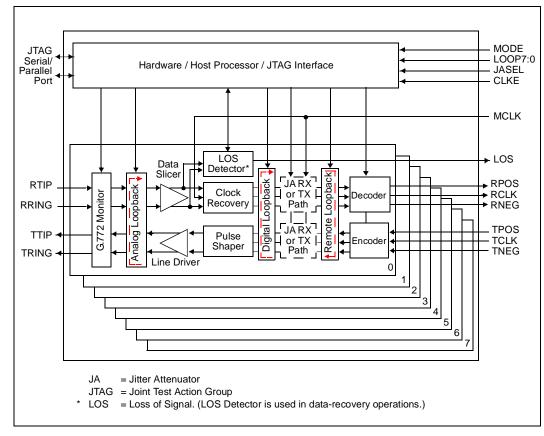
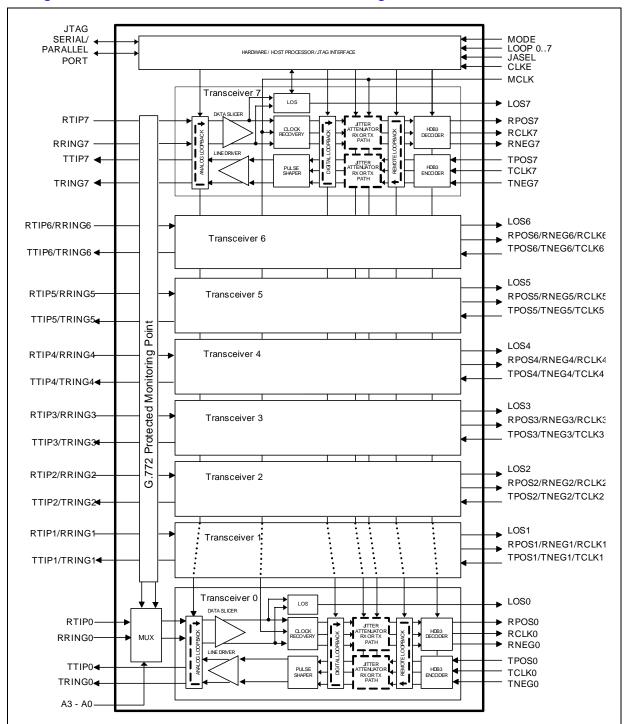



Figure 2 is a detailed block diagram of the LXT385ransceiver.

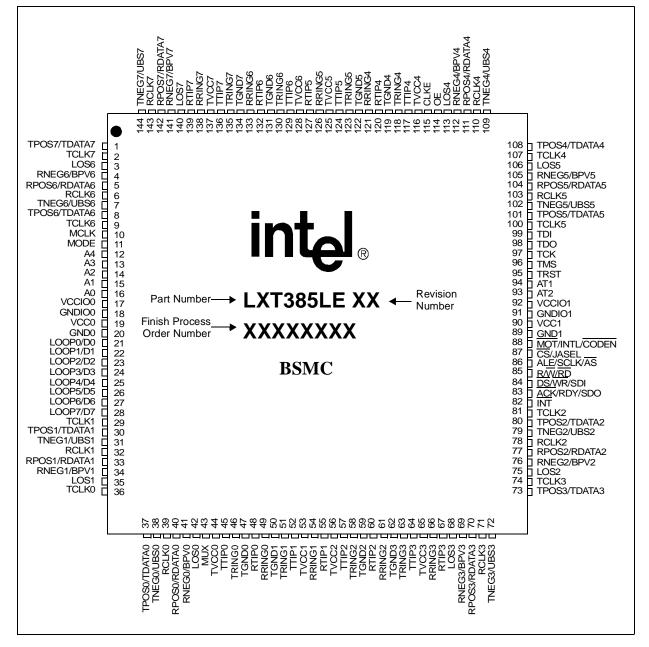
3.0 Pin Assignments and Package

Table 2 lists the top-side markings for the LXT385ransceiver, which has two packages:

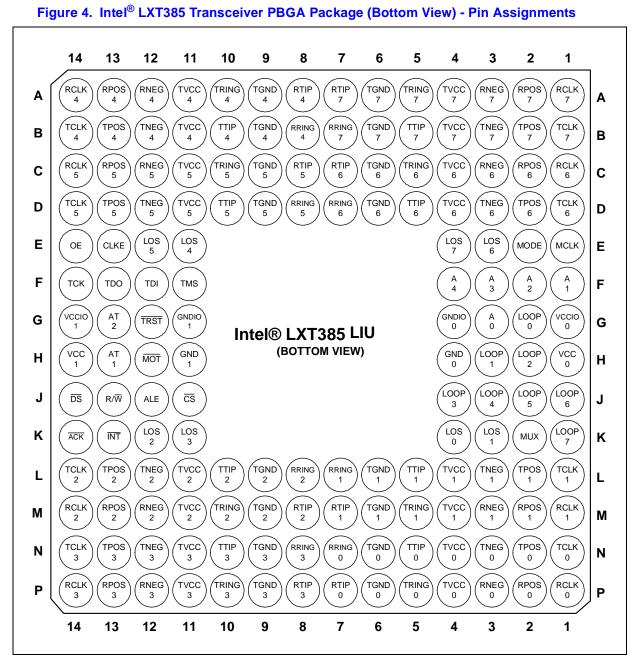
- A 144-pin Low-Profile Octal-Flat Package, or 'LQFP' (Figure 3)
- A 160-ball Plastic Ball Grid Array package, or 'PBGA' (Figure 4)

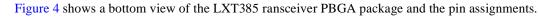
Table 2. Intel[®] LXT385 Transceiver Package Top-Side Markings

Marking	Definition
Part Number	Number of the unique identifier for this product family
Lot Number	A lot (that is, 'batch') number
FPO Number	Identifies the Finish Process Order number
Revision Number	Number of the particular silicon revision, also known as a 'stepping'. (For information on specific silicon steppings, see specification update documents for the LXT385ransceiver.)


• For signal descriptions, see Chapter 5.0, "Signal Descriptions".

• For mechanical specifications, see Chapter 16.0, "Mechanical Specifications".




Figure 3 shows a top view of the LXT385ransceiver Low-profile Octal Flat Pack (LQFP) package, with pin assignments. For package information, see Chapter 18.0, "Package Information".

4.0 Multi-Function Pins

The LXT385 ransceiver has several pins that have more than one name and more than one function, depending on the mode selected. This chapter lists the multi-function pins. Descriptions of signal functions are in Chapter 5.0, "Signal Descriptions".

4.1 Operating Mode Multi-Function Pins

Table 3 lists the MODE and $\overline{\text{MOT}}$ /INTL pin setting combinations that control the selection of operating modes for theLXT385 ransceiver.

Table 3. Operating Mode Selections

Pin	Settings	Operating Mode Selected			
MODE	MOT/INTL				
Low	Connect either low or high.	Hardware mode			
High	Low	Host Processor mode - Motorola processor parallel interface			
High	High	Host Processor mode - Intel [®] processor parallel interface			
VCC/2 Connect either low or high.		Host Processor mode - Serial interface			

Table 4 lists LXT385 ransceiver pins that have different names and functions depending on the specific operating mode selected. When the operating mode selected is the:

- Hardware mode, Column 1 names and functions apply.
- Host Processor mode with a parallel interface and the $\overline{\text{MOT}/\text{INTL}}$ pin is:
 - Low, Column 2 names and functions apply to a Motorola processor with a parallel interface.
 - High, Column 3 names and functions apply to an Intel[®] processor with a parallel interface.
- Host Processor mode with a serial interface, Column 4 names and functions apply to either a Motorola processor or an Intel[®] processor used with a serial interface.

		1. Hardware Mode PBGA Ball		Host Processor Mode					
QFP Pin	PBGA Ball			2. Parallel Interface - Motorola Processor		3. Parallel Interface - Intel [®] Processor		4. Serial Interface - Motorola or Intel [®] Processor	
		Signal Name	Signal Function	Signal Name	Signal Function	Signal Name	Signal Function	Signal Name	Signal Function
12	F4	A4	Must connect to ground	A4	Address select	A4	Address select	A4	No connect
13 14 15 16	F3 F2 F1 G3	A3 A2 A1 A0	Use for perfor- mance moni- toring	A3 A2 A1 A0	Address select	A3 A2 A1 A0	Address select	A3 A2 A1 A0	No connect
88	H12	CODEN	HDB3 / AMI select	MOT (see Table 3 on page 25)	Motorola processor select	INTL (see Table 3 on page 25)	Intel [®] processor select	CODEN/ INTL / MOT	No connect
87	J11	JASEL	JA path select	CS	Chip select	CS	Chip select	CS	Chip select
28 27 26 25 24 23 22 21	K1 J1 J2 J3 J4 H2 H3 G2	LOOP7 LOOP6 LOOP5 LOOP4 LOOP3 LOOP2 LOOP1 LOOP0	Loopback mode select	D7 D6 D5 D4 D3 D2 D1 D0	Parallel data bus	D7 D6 D5 D4 D3 D2 D1 D0	Parallel data bus	D7 D6 D5 D4 D3 D2 D1 D0	Must connect to ground
85	J13	R/W/ RD	Must connect to ground	R/W	Read/write	RD	Read enable	R/W / RD	No connect
86	J12	SCLK / AS / ALE /	Must connect to ground	ĀS	Address strobe	ALE	Address latch enable	SCLK	Shift clock
84	J14	SDI / DS / WR	Must connect to ground	DS	Data strobe	WR	Write enable	SDI	Serial data input
83	K14	SDO / ACK / RDY /	No connect	ACK	Data transfer acknow- ledge	RDY	Ready	SDO	Serial data output

Table 4.	Operating	Mode-Specific	Signal Names
----------	-----------	----------------------	--------------

4.2 Framer/Mapper I/O Pins

Depending on the state of a UBS7:0 pin, both the corresponding receiver and transmitter pins are automatically set for either bipolar I/O or unipolar I/O. When a UBS pin is connected:

- Low, bipolar I/O is selected.
- High for more than 16 consecutive MCLK clock cycles, unipolar I/O is selected.
- *Note:* For a description of operating in bipolar or unipolar mode, see Section 5.3.1, "Bipolar vs. Unipolar Operation Receive Side" on page 33 and Section 5.3.2, "Bipolar vs. Unipolar Operation Transmit Side" on page 34.

Table 5 lists LXT385 ransceiver receiver pins that have different names and functions depending on the I/O mode selected.

Pins	Balls	Bipol	ar I/O Signal Functions	U	nipolar I/O Signal Functions
141	A3	RNEG7	Receive negative data	BPV7	Detect bipolar violations output
4	C3	RNEG6	output	BPV6	
105	C12	RNEG5		BPV5	
112	A12	RNEG4		BPV4	
69	P12	RNEG3		BPV3	
76	M12	RNEG2		BPV2	
34	M3	RNEG1		BPV1	
41	P3	RNEG0		BPV0	
142	A2	RPOS7	Receive positive data	RDATA7	Receive data output
5	C2	RPOS6	output	RDATA6	
104	C13	RPOS5		RDATA5	
111	A13	RPOS4		RDATA4	
70	P13	RPOS3		RDATA3	
77	M13	RPOS2		RDATA2	
33	M2	RPOS1		RDATA1	
40	P2	RPOS0		RDATA0	
143	A1	RCLK7	Receive clock output	RCLK7	Receive clock output
6	C1	RCLK6		RCLK6	
103	C14	RCLK5		RCLK5	
110	A14	RCLK4		RCLK4	
71	P14	RCLK3		RCLK3	
78	M14	RCLK2		RCLK2	
32	M1	RCLK1		RCLK1	
39	P1	RCLK0		RCLK0	

Table 5. Receiver Bipolar/Unipolar I/O Signal Functions

Table 6 lists LXT385 ransceiver transmitter pins that have different names and functions depending on the I/O mode selected.

Pins	Balls	Bipol	ar I/O Signal Functions	U	nipolar I/O Signal Functions
144	B3	TNEG7	Transmit negative data	UBS7	Unipolar/Bipolar Select input.
7	D3	TNEG6	input	UBS6	
102	D12	TNEG5		UBS5	In the transmit mode, when TNEG/
109	B12	TNEG4		UBS4	UBS is high for 16 or more
72	N12	TNEG3		UBS3	consecutive MCLK clock cycles, unipolar I/O mode is selected.
79	L12	TNEG2		UBS2	
31	L3	TNEG1		UBS1	
38	N3	TNEG0		UBS0	
1	B2	TPOS7	Transmit positive data	TDATA7	Transmit data input
8	D2	TPOS6	input	TDATA6	
101	D13	TPOS5		TDATA5	
108	B13	TPOS4		TDATA4	
73	N13	TPOS3		TDATA3	
80	L13	TPOS2		TDATA2	
30	L2	TPOS1		TDATA1	
37	N2	TPOS0		TDATA0	
2	B1	TCLK7	Transmit clock input	TCLK7	Transmit clock input
9	D1	TCLK6		TCLK6	
100	D14	TCLK5		TCLK5	
107	B14	TCLK4		TCLK4	
74	N14	TCLK3		TCLK3	
81	L14	TCLK2		TCLK2	
29	L1	TCLK1		TCLK1	
36	N1	TCLK0		TCLK0	

Table 6. Transmitter Bipolar/Unipolar I/O Signal Functions

5.0 Signal Descriptions

This chapter lists and describes LXT385 ransceiver signals by function. All digital I/O signals are 5-V tolerant. (For package information, see Chapter 3.0, "Pin Assignments and Package" and Chapter 16.0, "Mechanical Specifications".)

5.1 Signal Groupings

Signal groupings discussed in this chapter include the following:

- Section 5.2, "Microprocessor-Standard Bus and Interface Signals"
- Section 5.3, "Framer/Mapper Signals"
- Section 5.4, "Line Interface Unit Signals"
- Section 5.5, "Clocks and Clock-Related Signals"
- Section 5.6, "Configuration and Mode-Select Signals"
- Section 5.7, "Signal Loss and Line-Code-Violation Signals"
- Section 5.8, "Power and Grounds"
- Section 5.9, "Test Signals"

5.2 Microprocessor-Standard Bus and Interface Signals

Table 7 lists and describes the microprocessor-standard bus and interface signals for the LXT385 ransceiver.

For multi-function pins, the pin name in **blue bold** print indicates the signal being discussed.

Note: For information on selecting parallel or serial interfaces, see the signal description for MODE in Section 5.6, "Configuration and Mode-Select Signals", Table 12.

Table 7. Microprocessor-Standard Bus and Interface Signals (Sheet 1 of 3)

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
A4	12	F4	DI	Address Select Input 4:0.
A3	13	F3		When the LXT385 ransceiver is in the:
A2	14	F2		Host Processor mode using a parallel interface that is in the:
A1	15	F1		 Non-multiplexed mode, A4:0 function as address pins.
AO	16	G3		 Multiplexed mode, A4:0 must be connected to multiplexed Address/Data Bus (AD).
				 Hardware mode, must be connected to ground. See Section 5.7, "Signal Loss and Line-Code-Violation Signals" for other pin functions.
ACK / RDY /	83	K14	DO	Data Transfer Acknowledge (Active Low) Output.
SDO				When the LXT385 ransceive <u>r is in</u> the Host Processor mode using a Motorola processor, \overrightarrow{ACK} acts as a data transfer acknowledge. A low signal on \overrightarrow{ACK} during a data bus operation that is a:
				 Read operation indicates valid data.
				 Write operation is an acknowledge signal that indicates a data transfer into an addressed register is accepted.
				NOTE: Wait states occur only if a write cycle immediately follows a previous read or write cycle (for example, read-modify-write).
				For other pin functions, see RDY and SDO.
ALE / AS /	86	J12	DI	Address Latch Enable Input.
SCLK				When the LXT385 ransceiver is in the:
				 Host Processor mode using an Intel[®] processor in a parallel interface, ALE acts as an address latch enable. In this case, the address on the multiplexed address/data bus pins D7:0 (also called AD7:0) is clocked into the LXT385 ransceiver with the falling edge of ALE.
				 Hardware mode, ALE must be connected to ground.
				For other pin functions, see \overline{AS} and SCLK.
ALE / AS /	86	J12	DI	Address Strobe (Active Low) Input.
SCLK				When the LXT385 ransceiver is in the:
				 Host Processor mode using a Motorola processor in a parallel interface, AS acts as an active-low address strobe.
				 Hardware mode, AS must be connected to ground.
				For other pin functions, see ALE and SCLK.
1. DI: Digital Inp	ut. DI/O	: Digital B	idirection	al Port. DO: Digital Output. OD: Open Drain

Table 7.	Microprocessor	-Standard Bu	is and Interface	Signals	(Sheet 2 of 3)	
	miler oprocessor		is and internace	Orginals		,

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description		
CS / JASEL	87	J11	DI	Chip Select (Active Low) Input.		
				When the LXT385 ransceiver is in the:		
				 Host Processor mode, CS is used to select a specific LXT385 ransceiver device so the host processor can communicate with the registers of thatLXT385 ransceiver. 		
				 Hardware mode, CS functions as JA Select (JASEL). (See JASEL in Section 5.6, "Configuration and Mode-Select Signals".) 		
D7 / LOOP7	28	K1	DI/O	(Parallel) Data Bus Input/Output 7:0.		
D6 / LOOP6	27	J1		When the LXT385 ransceiver is in the:		
D5 / LOOP5	26	J2		 Host Processor mode with a parallel interface that is: 		
D4 / LOOP4	25	J3		 Non-multiplexed, D7:0 function as a bi-directional 8-bit 		
D3 / LOOP3	24	J4		data port.		
D2 / LOOP2 D1 / LOOP1	23 22	H2 H3		 Multiplexed, D7:0 carry both bi-directional 8-bit data and the 8 least-significant address lines. 		
D0 / LOOP0	21	G2		 Host processor mode with a serial interface, D7:0 must be grounded. 		
				 Hardware mode, the D7:0 pins function as LOOP7:0. (See LOOP7:0 in Section 5.4, "Line Interface Unit Signals".) 		
DS / SDI / WR	84	J14	DI	Data Strobe (Active Low) Input.		
				When the LXT385 ransceiver is in the:		
				 Host Processor mode using a Motorola processor, DS acts as a data strobe. 		
				 Hardware mode, DS must be connected to ground. 		
				For other pin functions, see SDI and \overline{WR} .		
INT	82	K13	OD,	Interrupt (Active Low, Open Drain).		
			DO	$\overline{\text{INT}}$ is an active low, maskable, open drain output. If either an AIS or LOS interrupt enable bit is enabled, $\overline{\text{INT}}$ goes low to flag the host processor that the status of LXT385 ransceiver registers changed state.		
				The host processor INT input must be set for level triggering.		
				(For information on the LOS interrupt enable, see Table 31. For information on the AIS interrupt enable, see Table 45. For interrupt details, see Section 7.5, "Interrupt Handling").		
				\overline{INT} requires an external 10k Ω pull-up resistor.		
RD / R/W	85	J13	DI	Read Enable (Active Low) Input.		
				When the LXT385 ransceiver is in the:		
				 Host Processor mode using an Intel[®] processor, RD functions as a read enable. 		
				 Hardware mode, RD must be connected to ground. 		
				For other pin functions, see R/\overline{W} .		
1. DI: Digital Inc	ut. DI/O	: Digital B	idirection			
Bi. Bigitai Inp	1. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output. OD: Open Drain					

Table 7. Microprocessor-Standard Bus and Interface Signals (Sheet 3 of 3)

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
ACK / RDY /	83	K14	DO	Ready Output.
SDO				When the LXT385 ransceiver is in the Host Processor mode using an Intel [®] processor and the signal on RDY is:
				Low, RDY indicates a data transfer operation is in progress.
				 High, RDY indicates a register-access operation is completed.
				NOTE: RDY goes into a high-impedance tristate after completion of a bus cycle.
				For other pin functions, see ACK and SDO.
RD / R/W	85	J13	DI	Read/Write Input (Write Is Active Low).
				When the LXT385 ransceiver is in the:
				 Host Processor mode using a Motorola processor, R/W functions as a read/write signal.
				 Hardware mode, RW must be connected to ground.
				For other pin functions, see \overline{RD} .
ALE / AS /	86	J12	DI	Shift Clock Input.
SCLK				When SCLK is in the:
				 Host Processor mode using a serial interface, SCLK acts as a serial shift clock.
				 Hardware mode, SCLK must be connected to ground.
				For other pin functions, see \overline{AS} and ALE.
DS / SDI / WR	84	J14	DI	Serial Data Input.
				When the LXT385 ransceiver is in the:
				 Host Processor mode using a serial interface, SDI is used as serial data input.
				 Hardware mode, SDI must be connected to ground.
				For other pin functions, see \overline{DS} and \overline{WR} .
ACK / RDY /	83	K14	DO	Serial Data Output.
SDO				When the LXT385 ransceiver is in the Host Processor mode using a serial interface and the signal on CLKE is:
				 Low, SDO is valid on the falling edge of SCLK.
				 High, SDO is valid on the rising edge of SCLK.
				NOTE: SDO goes into a high-impedance tristate during a serial port write access.
				For other pin functions, see \overline{ACK} and RDY .
DS / SDI / WR	84	J14	DI	Write Enable Input.
				When the LXT385 ransceiver is in:
				 Host Processor mode using an Intel[®] processor, WR acts as a write enable.
				 Hardware mode, WR must be connected to ground.
				For other pin functions, see $\overline{\text{DS}}$ and SDI.
1. DI: Digital Inp	ut. DI/O	: Digital B	idirection	al Port. DO: Digital Output. OD: Open Drain

5.3 Framer/Mapper Signals

Framer/mapper signals are used to interface the LXT385 ransceiver to a framer/mapper.

5.3.1 Bipolar vs. Unipolar Operation - Receive Side

Table 5 on page 27 lists receive-side framer/mapper signals, which can connect to a framer/mapper using either bipolar or unipolar interface connections. Table 8 lists details.

Depending on the state of a UBS7:0 pin, both the corresponding receiver and transmitter pins are automatically set for either bipolar I/O or unipolar I/O. When a UBS pin is connected:

- Low, bipolar I/O is selected.
- High for more than 16 consecutive MCLK clock cycles, unipolar I/O is selected.

Receive side - Bipolar I/O. When TNEG/UBS is connected low, then bipolar I/O is selected and RNEG/RPOS functions are selected. In this case, the signal flow occurs as follows:

- 1. The receiver routes receive analog signals from RTIP/RRING to a data recovery circuit.
- 2. The data recovery circuit converts the incoming line AMI signals, which consist of positive and negative pulses, into a sequence of logic zeroes and ones. It then outputs the resulting information onto RNEG and RPOS.
- 3. The recovered clock from RTIP/RRING is output at RCLK.
- 4. The RNEG and RPOS data lines and the RCLK clock line connect the LXT385 ransceiver to a framer/mapper. A logic '1' on:
 - RNEG indicates that a negative pulse is detected on the line, and corresponds to the receipt of a negative pulse on RRING/RTIP.
 - RPOS indicates that a positive pulse is detected on the line, and corresponds to the receipt
 of a positive pulse on RRING/RTIP.
 - The receiver outputs the recovered clock at RCLK. RCLK synchronizes the data transfer into the framer/mapper.
- 5. RNEG/RPOS validation relative to RCLK is selectable with CLKE pin polarity. See the CLKE pin description in Table 11, "Clocks and Clock-Related Signals" on page 43.
- *Note:* In bipolar I/O mode, the framer/mapper is responsible for detecting any line-code violations that appear on the line. The framer/mapper also decodes HDB3.

Receive side - Unipolar I/O. When TNEG/UBS is connected high for more than 16 consecutive MCLK cycles, then unipolar I/O is selected and RDATA/BPV functions are active. RDATA does not distinguish between a positive or a negative pulse on the line. In this case, the signal flow occurs as follows:

- 1. RDATA and RCLK connect the LXT385 ransceiver to a framer/mapper, while BPV acts as a bipolar violation detector. The LXT385 ransceiver internally decodes HDB3/AMI.
- 2. The receiver outputs the recovered clock at RCLK. RCLK synchronizes the data transfer into the framer/mapper.
- 3. RDATA does not include information about the polarity of the marks at RTIP/RRING.
- 4. RDATA validation relative to RCLK is selectable with CLKE pin polarity. See the CLKE pin description in Table 11, "Clocks and Clock-Related Signals" on page 43.

5.3.2 Bipolar vs. Unipolar Operation - Transmit Side

Table 6 on page 28 lists transmit-side framer/mapper signals, which connect to a framer/mapper using either bipolar or unipolar interface connections. Table 8 lists details.

- TDATA works in combination with BPV outputs, in unipolar mode.
- TNEG works in combination with TPOS, in bipolar mode.

Depending on the state of a UBS7:0 pin, both the corresponding receiver and transmitter pins are automatically set for either bipolar I/O or unipolar I/O.

When a TNEG/UBS pin is connected low:

- TNEG/TPOS/TCLK lines are active, and bipolar I/O is selected.
 - A logic 1 on TNEG corresponds to the transmission of a negative pulse on TRING/TTIP.
 - A logic 1 on TPOS corresponds to the transmission of a positive pulse on TRING/TTIP.

When a TNEG/UBS pin is connected high for more than 16 consecutive MCLK clock cycles:

- TDATA/TCLK lines are active, and unipolar I/O is selected.
- Polarity cannot be controlled on the TTIP/TRING outputs.
- TCLK supplies the input synchronization for data transfer.

5.3.3 Framer/Mapper Signals - Details

- Table 8 lists and describes the LXT385 ransceiver framer/mapper receive signals.
- Table 9 on page 37 lists and describes the LXT385 ransceiver framer/mapper transmit signals.

For multi-function pins, the pin name in **blue bold** print indicates the signal being discussed.

Table 8. Framer/Mapper Receive Signals (Sheet 1 of 2)

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description					
BPV7 / RNEG7	141	A3	DO	Bipolar Violation Detect Output 7:0.					
BPV6 / RNEG6 BPV5 / RNEG5 BPV4 / RNEG4	4 105 112	C3 C12 A12		When unipolar I/O is selected for the LXT385 ransceiver, BPV acts as an output line code violation detector. If the LXT385 ransceiver:					
BPV3 / RNEG3 BPV2 / RNEG2	69 76	P12 M12		 Does not detect an in-service line code violation, BPV remains low. Detects an in-service line code violation, it asserts BPV 					
BPV1 / RNEG1 BPV0 / RNEG0	34 41	M3 P3		high. For details on Line Code Violations, see Section 5.7, "Signal					
				Loss and Line-Code-Violation Signals". For other pin functions, see RNEG.					
RCLK7	143	A1	DO	Receive Clock Output 7:0.					
RCLK6 RCLK5 RCLK4 RCLK3 RCLK2 RCLK1 RCLK0	6 103 110 71 78 32 39	C1 C14 A14 P14 M14 M1 P1		 Normally, this pin provides the recovered clock from the signal received at RTIP and RRING. Under LOS conditions, MCLK replaces RCLK at the RCLK output. For details, see Section 6.3.3, "Receiver Loss-Of-Signal Detector". When MCLK is Low: The LXT385 ransceiver enters the data recovery mode. RCLK will be in high impedance state. When MCLK is High: The clock recovery circuit is disabled. The RCLK output is then the EX-OR of RPOS and RNEG. This produces a pseudo-recovered clock. For details about the relationship between MCLK and RCLK, see Section 5.5, "Clocks and Clock-Related Signals", especially Table 11 on page 43. 					
RDATA7 / RPOS7	142	A2	DO	Receive Data Output 7:0.					
RDATA6 / RPOS6	5	C2		When unipolar I/O is selected for theLXT385 ransceiver, RDATA acts as the receive data output.					
RDATA5 / RPOS5 RDATA4 / RPOS4	104 111	C13 A13		See Section 5.3.1, "Bipolar vs. Unipolar Operation - Receive					
RDATA3 / RPOS3	70	P13		Side" on page 33.					
RDATA2 / RPOS2	77	M13		For other pin functions, see RPOS.					
RDATA1 / RPOS1 RDATA0 / RPOS0	33 40	M2 P2							
1. Al: Analog Input.	AO: Ana	log Output	1. Al: Analog Input. AO: Analog Output. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output.						

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
BPV7 / RNEG7	141	A3	DO	Receive Negative Data Output 7:0.
BPV6 / RNEG6 BPV5 / RNEG5	4 105	C3 C12		This signal description applies to both RNEG and RPOS in bipolar I/O mode. When the LXT385 ransceiver is in the:
BPV4 / RNEG4 BPV3 / RNEG3 BPV2 / RNEG2 BPV1 / RNEG1 BPV0 / RNEG0	112 69 76 34 41	A12 P12 M12 M3 P3		 Host processor mode, during an LOS condition, AIS can be inserted into the receive path. See the description of the GCR register RAISEN bit, in Section 6.3.6, "Receive Alarm Indication Signal (RAIS) Enable" on page 55. Hardware mode, RNEG and RPOS remain active during an LOS condition. When MCLK is provided with a clocking signal: The LXT385 ransceiver enters clock-recovery mode. RNEG[7:0] act as active-high bipolar Non Return to
				 Zero (NRZ) receive signal outputs. A High signal on RNEG corresponds to receipt of a negative pulse on RTIP/RDINC
				 negative pulse on RTIP/RRING. A High signal on RPOS corresponds to receipt of a positive pulse on RTIP/RRING.
				 These signals are valid on the falling or rising edges of RCLK, depending on the CLKE input. See the CLKE pin description in Table 11, "Clocks and Clock-Related Signals" on page 43.
				When MCLK is high:
				 The LXT385 ransceiver enters data recovery mode. RNEG[7:0] act as RZ data receiver outputs.
				 These signals are valid on the falling or rising edges of RCLK, depending on the CLKE input. See the CLKE pin description in Table 11, "Clocks and Clock-Related Signals" on page 43.
				When MCLK is low:
				 RNEG and RPOS can be placed in a high-impedance tristate with the MCLK pin. (For details, see MCLK in Section 5.5, "Clocks and Clock-Related Signals".)
				NOTE: For pin functions involving unipolar mode, see the BPV pin description.
RDATA7 / RPOS7	142	A2	DO	Receive Positive Data Output 7:0.
RDATA6 / RPOS6	5	C2		For the RPOS description, see RNEG.
RDATA5 / RPOS5	104	C13		NOTE: For pin functions involving unipolar mode, see the
RDATA4 / RPOS4	111	A13		RDATA pin description.
RDATA3 / RPOS3	70	P13		
RDATA2 / RPOS2	77	M13		
RDATA1 / RPOS1	33	M2		
RDATA0 / RPOSO	40	P2		
1. AI: Analog Input.	AO: Ana	log Output	t. DI: Digi	tal Input. DI/O: Digital Bidirectional Port. DO: Digital Output.

Table 8. Framer/Mapper Receive Signals (Sheet 2 of 2)

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
TCLK7 TCLK6 TCLK5 TCLK4 TCLK3 TCLK2 TCLK1 TCLK0	2 9 100 107 74 81 29 36	B1 D14 B14 L14 L1 N1	DI	 Transmit Clock Input 7:0. When the LXT385 ransceiver is in Hardware mode and TCLK is: Operating withthe normal clock signal, TPOS and TNEG are sampled on the falling edge of TCLK. Low and remains in a low state, the transmitter output drivers enter a low-power high-impedance tristate. High (for more than 16 consecutive MCLK clock cycles), and MCLK is: operating normally as a clock, the LXT385 ransceiver enters the TAOS mode. (For details, see Section 6.8, "Transmit All Ones Operations". not operating as a clock, but is either low or high, the pulse-shaper circuit shown in Figure 1 is disabled. For information on how to prevent damage to the LXT385 ransceiver when pulse shaping is disabled, see Section 6.4.2, "Transmitter Pulse Shaping".)
				TCLK MCLK Result
				Normal Clock Don't care TNEG and TPOS sampled on falling edge of TCLK
				Low Don't care Transmitter driver outputs enter high- impedance tristate
				High for 16 consecutive MCLK cycles
				High for 16 consecutive MCLK cycles
				 NOTE: When the LXT385 ransceiver is in the Host Processor mode, TAOS mode can be selected using registers in Chapter 8.0, "Registers". When pulse shaping is disabled, it is possible to overheat and damage the LXT385 ransceiver by leaving transmit inputs high continuously. For example a programmable ASIC might leave all outputs high over an extended period, until it is programmed. To prevent this, clock one of these signals: TPOS, TNEG, TCLK, or MCLK. Another solution is to set one of these signals low: TPOS, TNEG, TCLK, or OE. Note: The TAOS generator uses MCLK as a timing reference. In order to assure that the output frequency is within specification limits, MCLK must have the applicable stability.

Table 9. Framer/Mapper Transmit Signals (Sheet 1 of 3)

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
TNEG7 / UBS7 TNEG6 / UBS6 TNEG5 / UBS5 TNEG4 / UBS4 TNEG3 / UBS3 TNEG2 / UBS2 TNEG1 / UBS1 TNEG0 / UBS0	144 7 102 109 72 79 31 38	B3 D3 D12 B12 N12 L12 L3 N3	DI	Transmit Negative Data Input 7:0. TNEG and TPOS have the following characteristics: • Operate in bipolar I/O mode. • Active-high NRZ inputs. • Remain active during an LOS condition. TNEG/TPOS pin settings result in the selections shown in the following table. TPOS TNEG 0 0 Space 0 0 1 Negative Mark 1 1 1 Space (Not legal) • • TPOS indicates the transmission of a positive pulse. • TNEG indicates the transmission of a negative pulse.
TNEG7 / UBS7 TNEG6 / UBS6 TNEG5 / UBS5 TNEG4 / UBS4 TNEG3 / UBS3 TNEG2 / UBS2 TNEG1 / UBS1 TNEG0 / UBS0	144 7 102 109 72 79 31 38	B3 D3 D12 B12 N12 L12 L3 N3	DI	 Unipolar/Bipolar Select Input 7:0. The mode-controlled UBS pins define the interface between the framer/mapper and the transceiver. When the UBS is connected: Low selects bipolar I/O. High selects unipolar I/O after 16 consecutive TCLK clock cycles. With unipolar I/O, the encoding/decoding type can be either HDB3 or AMI. When the mode is the: Host Processor mode, the encoding/decoding type is determined by the CODEN bit in the GCR register. (For CODEN bit details, see Chapter 8.0, "Registers".) Hardware mode, the encoding/decoding type is determined by the CODEN pin discussed in Section 5.6, "Configuration and Mode-Select Signals". In unipolar I/O mode, TDATA is the data input. For other pin functions, see TNEG.
TDATA7 / TPOS7 TDATA6 / TPOS6 TDATA5 / TPOS5 TDATA4 / TPOS4 TDATA3 / TPOS3 TDATA2 / TPOS2 TDATA1 / TPOS1 TDATA0 / TPOS0	1 8 101 108 73 80 30 30 37	B2 D2 D13 B13 N13 L13 L2 N2	DI	 Transmit Data Input 7:0. When unipolar I/O is selected for the LXT385 ransceiver, TDATA is the only data input pin. After passing through the transceiver, TDATA generates the TTIP/TRING outputs. For other pin functions, see TPOS. TPOS=Transmit Positive data input TDATA=Transmit Data input

Table 9. Framer/Mapper Transmit Signals (Sheet 2 of 3)

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
TDATA7 / TPOS7	1	B2	DI	Transmit Positive Data Input 7:0.
TDATA6 / TPOS6	8	D2		For the TPOS description, see TNEG.
TDATA5 / TPOS5	101	D13		For other pin functions, see TDATA.
TDATA4 / TPOS4	108	B13		 TPOS=Transmit Positive Data Input
TDATA3 / TPOS3	73	N13		TDATA=Transmit data Input
TDATA2 / TPOS2	80	L13		
TDATA1 / TPOS1	30	L2		
TDATA0 / TPOSO	37	N2		

Table 9. Framer/Mapper Transmit Signals (Sheet 3 of 3)

5.4 Line Interface Unit Signals

For multi-function pins, the pin name in **blue bold** print indicates the signal being discussed.

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
D7 / LOOP7	28	K1	DI/O	Loopback Mode Input/Output.
D6 / LOOP6 D5 / LOOP5	27 26	J1 J2		When the LXT385 ransceiver is in the Hardware mode and a LOOPx pin is:
D4 / LOOP4	25	J3		 Low, the LXT385 ransceiver enters Remote loopback.
D3 / LOOP3 D2 / LOOP2 D1 / LOOP1	24 23 22	J4 H2 H3		 This mode ignores data on TPOS and TNEG, although a TCLK input is still required. An option is to connect RCLK to TCLK externally, outside the transceiver.
D0 / LOOP0	21	G2		 Data received on RTIP and RRING is looped around and retransmitted on TTIP and TRING.
				 In data recovery mode, the pulse template cannot be guaranteed while in a remote loopback. (For details, see Section 6.7.3, "Remote Loopback".)
				 High, the LXT385 ransceiver enters Analog loopback.
				 This mode ignores data received on RTIP and RRING.
				 Data transmitted on TTIP and TRING is internally looped around and routed back to the receive inputs. (For details, see Section 6.7.1, "Analog Loopback".)
				• Left unconnected, LOOPx stays in a high-impedance tristate.
				 Loopback is no longer selected.
				 If the LXT385 ransceiver is used in Hardware mode, to minimize cross-talk, the layout design must not route signals with fast transitions near the LOOP7:0 pins. Also maintain a solid ground plane under these pins.
				When the LXT385 ransceiver is in the Host Processor mode with a:
				 Parallel interface, see the signal descriptions for D7:0 in Section 5.2, "Microprocessor-Standard Bus and Interface Signals".
				Serial interface, LOOP7:0 must be grounded.
				For other pin functions, see D7:0 in Section 5.2, "Microprocessor- Standard Bus and Interface Signals".
1. Al: Analog	Input. AC): Analog (Dutput. D	: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output.

Table 10. Line Interface Unit Signals (Sheet 1 of 3)

Table 10. Line Interface Unit Signals (Sheet 2 of 3)

a : 1			<u>.</u>					
Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description				
OE	114	E14	DI	Output Driver Enable Input.				
				Either the (hardware) OE pin or the OER register can be used to place the transmitter TRING and TTIP outputs immediately into a high-impedance mode. This supports redundancy applications without external mechanical relays.				
				When the LXT385 ransceiver is in the:				
				 Hardware mode and OE is connected: 				
				 Low, OE is used to disable all transmit output drivers at one time, and to place TRING and TTIP outputs into high- impedance. All other internal circuitry stays active. 				
				 High, OE is used to enable transmitter output drivers. 				
				 Host Processor mode, instead of the OE pin, you can write a 1 to the OE bit of the OER register to place individual TRING and TTIP outputs into high-impedance. (See Table 43 in Chapter 8.0, "Registers".) 				
				NOTE: In Host Processor mode, the OE pin when set low overrides the OER register setting.				
RRING7	138	B7	AI	Receive Ring Input 7:0.				
RRING6	133	D7		RRING (and RTIP) are differential line receiver inputs (see				
RRING5	126	D8		Section 6.3.2, "Receiver Inputs" on page 53).				
RRING4	121	B8		The differential signal received at both RRING and RTIP provides				
RRING3	66	N8		either RDATA, or RPOS/RNEG, depending on mode of operation (unipolar or bipolar).				
RRING2	61	L8		NOTE: In clock-recovery mode, the differential signal received at				
RRING1	54	L7		both RRING and RTIP also provides the recovery clock,				
RRING0	49	N7		RCLK. For more information on clock recovery, see Section 6.3.1, "Receiver Clocking".				
RTIP7	139	A7	AI	Receive Tip Input 7:0.				
RTIP6	132	C7		For the RTIP description, see RRING (above).				
RTIP5	127	C8						
RTIP4	120	A8						
RTIP3	67	P8						
RTIP2	60	M8						
RTIP1	55	M7						
RTIP0	48	P7						
TRING7	135	A5	AO	Transmit Ring Output 7:0.				
TRING6	130	C5		TRING (and TTIP) outputs are used to generate a differential				
TRING5	123	C10		output on the line side of the transmitter transformer.				
TRING4	118	A10		When the LXT385 ransceiver is in:				
TRING3	63	P10		Hardware mode, and either OE or TCLK is low, TTIP (and				
TRING2	58	M10		TRING) are placed in a high-impedance tristate.				
TRING1	51	M5		 Host Processor mode, TRING and TTIP can be placed in a high-impedance tristate on a port-by-port basis by writing a 1 				
TRING0	46	P5		to the OE bit in the Output Enable Register (OER). OE or TCLK low also places TTIP/TRING into high-impedance. (For more information, see Table 43 in Chapter 8.0, "Registers".)				
1. Al: Analog	1. Al: Analog Input. AO: Analog Output. DI: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output.							

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
TTIP7	136	B5	AO	Transmit Tip Output 7:0.
TTIP6	129	D5		For the TTIP description, see TRING (above).
TTIP5	124	D10		
TTIP4	117	B10		
TTIP3	64	N10		
TTIP2	58	L10		
TTIP1	52	L5		
TTIP0	45	N5		
1. AI: Analog	Input. AC): Analog (Dutput. D	I: Digital Input. DI/O: Digital Bidirectional Port. DO: Digital Output.

Table 10. Line Interface Unit Signals (Sheet 3 of 3)

5.5 Clocks and Clock-Related Signals

Table 11 lists and describes LXT385 ransceiver clocks and clock-related signals.

- *Note:* Within this table, 'RCLK' references RCLK7:0 and 'TCLK' references TCLK7:0. Each RCLK and TCLK signal is used with corresponding signals.
 - Example: RCLK6 is the receive clock used by RPOS6 and RNEG6.
 - Example: TCLK5 is the transmit clock used by TPOS5 and TNEG5.

Table 11. Clocks and Clock-Related Signals (Sheet 1 of 2)

Signal Name	QFP Pin	PBGA Ball	Signal Type			Signal De	scription	
CLKE	115	E13	DI	Clock I	Edge Sel	ect Input.		
				for: • Clo	ock recove	ery (see Section 6.3	overy. When the rec	,
				• 	edge of R SCLK. (So Transceiv High caus edge of R SCLK. (So	es (1) both RPOS a CLK and (2) SDO t ee Figure 20 in Sec er - Transmit Timing es (1) both RPOS a CLK and (2) SDO t	and RNEG to be vali o be valid on the ris tion 19, "Intel® LXT	lling edge of 385 id on the falling sing edge of
					CLKE	RCLK for Valid RNEG/RPOS	SCLK for Valid SDO	
					Low		SCLK	
					High		SCLK	
1. DI: Dig	ital Innut			Mo • /	de"), the Active-low		-	

Table 11.	Clocks and	Clock-Related	Signals	(Sheet 2 of 2)
-----------	-------------------	----------------------	---------	----------------

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
MCLK	10	E1	DI	Master Clock Input.
				MCLK is an independent, free-running reference clock that must be used at 2.048 MHz, to generate the following internal reference signals:
				Reference clock during a blue-alarm transmit-all-ones condition.
				 Generation of RCLK signal during a loss-of-signal condition.
				 Timing reference for the integrated clock-recovery unit, and the integrated digital jitter attenuator.
				 Wait-state generation logic for host processors that use parallel interfaces.
				If MCLK is:
				 Low continuously, the complete receive path is powered down and output pins RCLK, RPOS, and RNEG are switched to a high- impedance tristate.
				 High continuously, the phase-locked loop clock-recovery circuit is disabled and the LXT385 ransceiver operates as only a simple data receiver (without clock recovery).
				NOTE:
				 MCLK is not required if the LXT385 ransceiver is used as an analog front end without clock recovery and jitter attenuation.
				 The TAOS generator uses MCLK as a timing reference. To ensure the output frequency is within specification limits, MCLK must have the applicable stability.
				 If MCLK is not provided, the LXT385 ransceiver cannot be used for data recovery with Motorola processors because wait states cannot be added. (Wait-state generation through ACK is not available.)
				Caution: Whenever MCLK is not provided, the LXT385 ransceiver is forced into a static state, possibly causing the TTIP/TRING outputs to overheat. To prevent overheating, see Section 6.5, "Line-Interface Protection".
RCLK				Receive Clock Output 7:0.
				For information on RCLK, see Section 5.3, "Framer/Mapper Signals".
SCLK				Shift Clock Input.
				For information on SCLK, see Section 5.2, "Microprocessor-Standard Bus and Interface Signals".
TCLK				Transmit Clock Input 7:0.
				For information on TCLK, see Section 5.3, "Framer/Mapper Signals".
1. DI: Dig	ital Input			

5.6 Configuration and Mode-Select Signals

Table 12 lists and describes the LXT385 ransceiver configuration and mode-select signals. For multi-function pins, the pin name in **blue bold** print indicates the signal being discussed.

Table 12. Configuration and Mode-Select Signals (Sheet 1 of 2)

	Pin	PBGA Ball	I/O ¹		Signal Descript	ion
CODEN/INTL/	88	H12	DI	Codec Enable Selec	t Input.	
МОТ					ncoder/decoder se	lardware mode, CODEN lection when in unipolar
				 Low, it enables a 	n HDB3 encoder/d	lecoder.
				 High, it enables a 	an AMI encoder/de	coder (transparent mode).
				is determined		e encoding/decoding type it. (For CODEN bit details,
				For other pin function	s, see INTL/MOT.	
CODEN / INTL	88	H12	DI	Host Processor Sele	ect Input.	
/ МОТ				When the LXT385 rai this signal is:	nsceiver is in the h	ost processor mode and
				 high, the host pro microcontrollers. 	ocessor interface is	s configured for Intel [®]
				 low, the host prod microcontrollers. 	cessor interface is	configured for Motorola
				For other pin function	s, see CODEN.	
CS / JASEL	87	J11	DI	Chip Select Input.		
				In Host Mode, this ac parallel interface. For transition from High to For information on the "Microprocessor-Stan	each read or write b Low, and remain e \overline{CS} signal, see S	Low. ection 5.2,
CS / JASEL	87	J11	DI	Jitter Attenuator Se	lect Input.	
				When the LXT385 rai determines the jitter a following table.		lardware mode, JASEL ition, as listed in the
				JASEL	JA Position	
				Low	Transmit path	
				High	Receive path	
				High impedance	JA is disabled	
				For other pin function Standard Bus and Int		on 5.2, "Microprocessor-
1. DI: Digital Input	t					

Table 12. Configuration and Mode-Select Signals (Sheet 2 of 2)

Signal Name	QFP Pin	PBGA Ball	I/O ¹		Signal Description	
MODE	11	E2	DI	Mode Sel	ect Input.	
					used to select the type of operating mode r uses, as shown in the following table.	the LXT385
				MODE	Operating Mode	
				Low	Hardware mode	
				High	Host Processor mode - Parallel interface	
				VCC/2	Host Processor mode - Serial interface	
				 In Ha disab and re In Par are us In Second SDO, For details Section Section 	C/2 can be obtained by connecting to a re- nsisting of two 10 kΩ resistors across VCC rdware Mode (low), the parallel processon led and hard-wired pins are used to control eport status. rallel Host Mode (high), the parallel port in sed to control configuration and report sta- rial Host mode (VCC/2), the serial interface SCLK, and CS are used. s on modes in the table, see the following on 7.2, "Hardware Mode" on 7.4.1, "Host Processor Mode - Parallel on 7.4.2, "Host Processor Mode - Serial In	c and Ground. r interface is of configuration hterface pins itus. ce pins: SDI, : Interface"
MUX	43	K2	DI		ed/Non-Multiplexed Select Input.	
WOX	40	NZ.	DI	When the	LXT385 ransceiver is in parallel interface mode, and MUX is:	host
				• Low, (operation is in non-multiplexed mode.	
				• High,	operation is in multiplexed mode.	
				For timing Parallel In	diagrams, see Section 11.2, "Host Proce terface Timing".	essor Mode -
TNEG7 / UBS7	144	B3	DI	Unipolar/	Bipolar Select Input 7:0.	
TNEG6 / UBS6	7	D3			nation on the UBS signals, see Section 5.	3, "Framer/
TNEG5 / UBS5	102	D12		Mapper S	ignais".	
TNEG4 / UBS4	109	B12				
TNEG3 / UBS3	72	N12				
TNEG2 / UBS2 TNEG1 / UBS1	79 31	L12 L3				
TNEG0 / UBS0	31	L3 N3				
1. DI: Digital Inp		110				

5.7 Signal Loss and Line-Code-Violation Signals

Table 13 lists and the signal loss and line-code violation signals for the LXT385 ransceiver.

F4 F3 F2 F1 G3	DI	 Performance Monitoring Input. When the LXT385 ransceiver is in the: Hardware mode, the A3:0 pins make the performance-monitoring selections shown in Table 14. A4 must be connected to ground. Host Processor mode: These pins no longer control the monitoring function. Instead, in non-multiplexed host mode, these pins function as non-multiplexed address pins (see Section 5.2, "Microprocessor-
F2 F1		 Hardware mode, the A3:0 pins make the performance- monitoring selections shown in Table 14. A4 must be connected to ground. Host Processor mode: These pins no longer control the monitoring function. Instead, in non-multiplexed host mode, these pins function as non-
F1		 monitoring selections shown in Table 14. A4 must be connected to ground. Host Processor mode: These pins no longer control the monitoring function. Instead, in non-multiplexed host mode, these pins function as non-
• •		 to ground. Host Processor mode: These pins no longer control the monitoring function. Instead, in non-multiplexed host mode, these pins function as non-
		 These pins no longer control the monitoring function. Instead, in non-multiplexed host mode, these pins function as non-
		in non-multiplexed host mode, these pins function as non-
		Standard Bus and Interface Signals").
		 For information on how to control performance monitoring, see Table 36, "Performance-Monitoring Register, MON - 0Bh" on page 86.
		Bipolar Violation Detect Output 7:0.
		For information on the BPV signals, see Section 5.3, "Framer/ Mapper Signals".
		Clock Edge Select Input.
		For information on how CLKE is used for clock and data recovery, see Section 5.5, "Clocks and Clock-Related Signals".
E4	DO	Loss of Signal Output.
E3		LOS is:
E12		• Low when a loss-of-signal condition is cleared (incoming signal
E11		with normal levels, being processed through the transceiver).
K11		High (indicating a loss of signal), when there is no incoming instal (second states of second states and second states are second
K12		signal (sequence of marks for a specified time interval).
K3 K4		NOTE: When a loss-of-signal condition is cleared, LOS returns to low when an incoming signal has a sufficient number of
N4		transitions in a specified time interval. (For details, see Section 6.3.3, "Receiver Loss-Of-Signal Detector".)
		Receive Clock Output 7:0.
		For information on how RCLK is used for clock and data recovery, see Section 5.3, "Framer/Mapper Signals".
	: Digital	: Digital Output.

Table 13. Signal Loss and Line-Code-Violation Signals

Table 14 lists performance-monitoring selections that can be made when the LXT385 ransceiver is in the Hardware mode.

Signal Name	QFP Pin	PBGA Ball	Signal Description						
A3	13	F3	Performance Monitoring Input.						
A2	14	F2	When A0 through A2 are low, the LXT385 ransceiver is configured as a octal line						
A1 A0	15 16	F1 G3	transceiver without monitoring. When the LXT385 ransceiver is in Hardware mode, A3 is used in combination						
	10	00	with A2:0 for non-intrusive performance monitoring.						
			 When A2:0 are all '0', there is no performance monitoring of receivers, and the LXT385 ransceiver is configured as a octalline transceiver without monitoring capability. When A2:0 are not all '0' and: 						
				 When A2 = '0', performance monitoring of receivers occurs as shown in the following table. 					
				A3	A2	A1	A0	Selection	
				0	0	0	0	No performance monitoring	
				0	0	0	1	Performance monitoring of Receiver 1	
				0	0	1	0	Performance monitoring of Receiver 2	
				0	0	1	1	Performance monitoring of Receiver 3	
				0	1	0	0	Performance monitoring of Receiver 4	
				0	1	0	1	Performance monitoring of Receiver 5	
				0	1	1	0	Performance monitoring of Receiver 6	
				0	1	1	1	Performance monitoring of Receiver 7	
			 When A3 = '1', performance monitoring of transmitters occurs as shown the following table. (Transmitter monitoring is not supported when the respective channel is set to analog loopback mode.) A3 A2 A1 A0 Selection 						
						A1	A0	Selection	
				1	0	0	0	No performance monitoring	
				1	0	0	1	Performance monitoring of Transmitter 1	
				1	0	1	0	Performance monitoring of Transmitter 2	
				1	0	1	1	Performance monitoring of Transmitter 3	
				1	1	0	0	Performance monitoring of Transmitter 4	
					1	0	1		
				1	-	-		Performance monitoring of Transmitter 5	
				1 1 1	1 1	1	0	Performance monitoring of Transmitter 5 Performance monitoring of Transmitter 6 Performance monitoring of Transmitter 7	

Table 14. Performance-Monitoring Selections with A3:0 Pins

5.8 Power and Grounds

Table 15 lists and describes the LXT385 ransceiver power and grounds.

For low-noise operation, the LXT385 ransceiver is designed so that each transmitter has its own power and its own ground. These pins are not necessarily internally connected. For example, for channel 0 transmit, TGND0 is the corresponding ground pin and TVCC0 is the corresponding power pin.

Table 15. Power and Grounds

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description		
GND1	89	H11	G	Ground (Core) 1:0.		
GND0	20	H4	S	GND0 and GND1 pins are ground for the digital core.		
GNDIO1	91	G11	G	Ground (I/O) 1:0.		
GNDIO0	18	G4	S	GNDIO0and GNDIO1 pins are grounds for the digital I/O interface.		
TGND7	134	A6, B6	G	Transmit Driver Ground 7:0.		
TGND6	131	C6, D6		TGND[7:0] pins are grounds for the output drivers. Must		
TGND5	122	C9, D9		be tied to PC board ground at all times.		
TGND4	119	A9, B9				
TGND3	62	N9, P9				
TGND2	59	L9, M9				
TGND1	50	L6, M6				
TGND0	47	N6, P6				
TVCC7	137	A4, B4	Р	Transmit Driver Power Supply 7:0.		
TVCC6	128	C4, D4		TVCC[7:0] pins are the power supply pins for the		
TVCC5	125	C11, D11		corresponding output drivers.		
TVCC4	116	A11, B11		All TVCC pins can be connected to either a 3.3-V or a 5-V power supply. Never leave these pins disconnected.		
TVCC3	65	N11, P11				
TVCC2	56	L11, M11		For details, see Section Section 6.4.4, "Transmitter Output Driver Power and Grounds".		
TVCC1	53	L4, M4		ouput bindi i ower and orounds .		
TVCC0	44	N4, P4				
VCC1	90	H14	Р	Power (Core) 1:0.		
VCC0	19	H1	S	For details, see Chapter 10.0, "Electrical Characteristics".		
VCCIO1	92	G14	Р	Power (I/O) 1:0.		
VCCIO0	17	G1	S	For details, see Chapter 10.0, "Electrical Characteristics".		
1. G: Ground. P: Power.						

5.9 Test Signals

Table 17 lists and describes the LXT385 ransceiver test signals, which are used to test all digital input, output, and input/output pins.

The JTAG test signals are compatible with the IEEE 1149.1 boundary-scan test.

Table 16. JTAG Analog Interface Test Signals

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
AT2	93	G13	AO	JTAG Analog Test Port 2:1.
AT1	94	H13	AI	 AT2 is the JTAG analog output test port.
				 AT1 is the JTAG analog input test port.
				Both test ports are used for test purposes.
				See Section 9.4.2, "Analog Port Scan Register (ASR)" on page 99 and Figure 17, "Analog Test Port Application" on page 98.
1. Al: Ana	alog Input.	AO: Analo	og Output.	l

Table 17. JTAG Digital Interface Test Signals

Signal Name	QFP Pin	PBGA Ball	Signal Type	Signal Description
ТСК	97	F14	DI	JTAG Test Clock Input.
				TCK is the clock input for JTAG.
				When TCK is not used, connect it to ground.
TDI	99	F12	DI	JTAG Test Data Input.
				TDI, the test data input for JTAG, is used for loading serial instructions and data into internal test logic. TDI is sampled on the rising edge of TCK.
				TDI is connected high internally and can be left disconnected.
TDO	98	F13	DO	JTAG Test Data Output.
				TDO, the test data output for JTAG, is used for reading all serial configuration and test data from the internal LXT385 ransceiver test logic. It is updated on the falling edge of TCK.
TMS	96	F11	DI	JTAG Test Mode Select Input.
				TMS, used to control the test-logic state machine, is sampled on the rising edge of TCK.
				TMS is connected high internally and can be left disconnected.
TRST	95	G12	DI	JTAG Controller Reset Input.
				TRST is used to reset the JTAG controller.
				TRST is connected high internally and can be left disconnected.
1. DI: Digital Input. DO: Digital Output. 2. See Section 9.4.5, "Instruction Register (IR)" on page 100. Figure 15, "JTAG Architecture" on page 91. and				

2. See Section 9.4.5, "Instruction Register (IR)" on page 100. Figure 15, "JTAG Architecture" on page 91. and Figure 18, "JTAG Timing" on page 100.

6.0 Functional Description

This functional description chapter follows the flow of signals through an LXT385 ransceiver. This chapter discusses the following topics:

- Section 6.1, "Functional Overview"
- Section 6.2, "Initialization and Reset"
- Section 6.3, "Receiver"
- Section 6.4, "Transmitter"
- Section 6.5, "Line-Interface Protection"
- Section 6.6, "Jitter Attenuation"
- Section 6.7, "Loopbacks"
- Section 6.8, "Transmit All Ones Operations"
- Section 6.9, "Performance Monitoring"
- Section 6.10, "Intel® Hitless Protection Switching"

6.1 Functional Overview

The LXT385 ransceiver is a fully integrated octalline interface unit designed for 2.048 Mbps short-haul applications. (For a block diagram, see Figure 1.)

The LXT385 ransceiver can be controlled either by a 'Hardware mode' that uses hard-wired pins or by a 'Host Processor mode', which uses either a serial or parallel host processor interface that is controlled in software. (For more information on selecting an operating mode, see Table 3 in Section 4.1, "Operating Mode Multi-Function Pins".)

Each transceiver front end interfaces with four lines: one pair of two lines for transmit, and one pair of two lines for receive. These two pairs make up a digital data loop for full-duplex transmission.

The TCLK pin provides the transmitter timing reference, and the MCLK pin provides the receiver reference clock. The LXT385 ransceiver is designed to operate without any reference clock when it is used as an analog front end (that is, for data recovery in the receiver path and as a line driver in the transmit path). MCLK is mandatory if on-chip clock recovery is required.

Note: MCLK should be true to the recovered clock of the incoming data. It should be only plesiochronous to MCLK.

All eight clock-recovery circuits share the same reference clock defined by the MCLK input signal. (For details on MCLK, see Table 11 in Section 5.5, "Clocks and Clock-Related Signals".)

6.2 Initialization and Reset

Initialization for theLXT385 ransceiver occurs as follows:

 During power-up, the LXT385 ransceiver is in an unknown state until the power supply reaches approximately 70% of VCC. Also during power-up, an initial reset sets all registers to their default values and resets the status and state machines for the LOS detector circuit. (Between 50 and 70% of VCC, the LXT385 ransceiver is in a critical zone. For more

information about this critical zone, see the application note on slow power-up rise time, referenced in Section 1.3, "Related Documents".)

- 2. A write to the reset register (RES, Table 35) initiates a reset cycle that results in setting all LXT385 ransceiver registers to their default values. When the reset cycle occurs:
 - a. In the Intel[®] processor non-multiplexed mode, the reset cycle is 2 microseconds long.
 - b. In all other modes, the reset cycle is 1 microsecond long.
- *Note:* For more information related to reset, see Section 7.4.1, "Host Processor Mode Parallel Interface".

6.3 Receiver

The LXT385 ransceiver has eight identical receivers.

6.3.1 Receiver Clocking

In the receive mode, clocking for the LXT385 ransceiver receiver depends on the following. When the LXT385 ransceiver is in:

- Clock-recovery mode, the RCLK pin provides the recovered clock from the signal received at RRING and RTIP.
- Clock-recovery mode with LOS conditions, at the RCLK output there is a transition from RCLK (derived from recovered data) to MCLK. For more information on clock-recovery mode, see Section 6.3.3, "Receiver Loss-Of-Signal Detector" and Section 6.3.1, "Receiver Clocking".
- Data-recovery mode and MCLK is:
 - Low, the RCLK pin is in a high-impedance tristate.
 - High, the RNEG and RPOS pins are internally connected to an EX-OR output to RCLK for external clock-recovery applications.

For more information on data-recovery mode, see Section 6.3.4, "Receiver Data Recovery Mode".

6.3.2 Receiver Inputs

A receiver processes input signals as follows:

- 1. Through the line interface step-down transformer, typically from either a twisted-pair or a coaxial cable. (For transformer specifications, seeFigure 6 and Chapter 12.0, "Line-Interface-Unit Circuit Specifications".) After the transformer, the signal is terminated and is sent to the receiver section of the LXT385 ransceiver.
- 2. The receiver inputs, RTIP (receives positive pulses) and RRING (receives negative pulses), are processed through the internal differential amplifier. The differential amplifier then sends the signal to the peak detector.

Recovered data is output at RPOS and RNEG in bipolar mode, or at RDATA in unipolar mode. The recovered clock is output at RCLK. Use the CLKE pin to select the RPOS/RNEG validation relative to the polarity of the edge of RCLK.

- 3. The peak detector samples a received signal and determines its maximum peak value. The receiver can:
 - accurately recover signals in excess of 12 dB of attenuation
 - receive signal levels well below 500 mV.

Regardless of received signal level, the peak detectors are held above a minimum level of 0.150 V (typical), to provide immunity from impulsive noise.

4. The peak detector sends a percentage of the maximum peak value to the data slicers. This percentage acts as a threshold level to ensure an optimum signal-to-noise ratio. The threshold level is typically 50% (see Table 59, "Intel® LXT385 Transceiver AC Receiver Characteristics" on page 107).

- 5. The data slicer processes the received signal, after which the signal simultaneously goes to both the clock and data-recovery sections.
 - The data and timing recovery circuits provide an input jitter tolerance better than required by ITU G.823, as shown in Test Specifications, Figure 32, "Intel® LXT385 Transceiver Jitter Tolerance Compared to ITU G.823" on page 128.
 - Depending on the options selected, recovered clock and data signals may be routed through the jitter attenuator, through the HDB3/AMI decoder, and may be output to the framer as either bipolar or unipolar data.

6.3.3 Receiver Loss-Of-Signal Detector

The LXT385 ransceiver loss-of-signal (LOS) detector circuit is designed to detect loss of signals in both analog and digital domains. This circuit is independent of the data slicer.

- In hardware mode, it complies with the latest ITU G.775 recommendations.
- Under software control, the detector can be configured to comply to the ETSI ETS 300 233 specification (LACS Register).

The receiver monitor loads a digital counter at the RCLK frequency. The counter is incremented each time a zero is received, and reset to zero each time a one (mark) is received. Depending on the operation mode, a certain number of consecutive zeros sets the LOS signal. The recovered clock is replaced by MCLK at the RCLK output with a minimum amount of phase errors. MCLK is required for receive operation. When the LOS condition is cleared, the LOS flag is reset and another transition replaces MCLK with the recovered clock at RCLK. RPOS/RNEG will reflect the data content at the receiver input during the entire LOS detection period for that channel.

6.3.3.1 G.755 and ETSI 300 233 - Loss of Signal Detection

- In G.775 mode a loss of signal is detected if the signal is below 200mV (typical) for 32 consecutive pulse intervals. The LOS flag is reset when the received signal reaches 12.5% ones density (4 marks in a sliding 32-bit period) with no more than 15 consecutive zeros and the signal level exceeds 250mV (typical). Following the next MCLK transition, MCLK is replaced with a recovered clock at the RCLK output.
- In ETSI 300 233 mode, a loss of signal is detected if the signal is below 200mV for 2048 consecutive intervals (1 ms). The LOS condition is cleared and the output pin returns to Low when the incoming signal has transitions when the signal level is equal or greater than 250mV for more than 32 consecutive pulse intervals. This mode is activated by setting the LACS register bit to one.

6.3.4 Receiver Data Recovery Mode

In data-recovery mode, the combined analog/digital LOS detector circuit uses only its LOS analog part, which complies with the ITU-G.775 recommendation. The LOS digital timing is derived from an internal self-timed circuit. RPOS/RNEG stay active during the loss of signal.

The LXT385 ransceiver monitors the incoming signal amplitude. Typically, any signal below 200mV for more than $30\mu s$ asserts the corresponding LOS pin. The LOS condition clears when the signal amplitude rises above 250mV. To declare an LOS condition in accordance to ITU G.775, the LXT385 ransceiver requires periods that are more than 10 bits and less than 255 bits.

6.3.5 Receiver Alarm Indication Signal (AIS) Detection

The receiver performs an Alarm Indication Signal (AIS) detection independently of any loopback mode. This feature is available only in the Host Processor mode and only in the clock-recovery mode.

Because there is no clock in the data-recovery mode, AIS detection does not work in that mode. AIS requires MCLK to be active, because the AIS function depends on a clock to count the number of ones in an interval.

After power-on reset, the LACS register (Table 38) can be set to select either the ITU G.775 detection mode or the ETSI 3000 233 detection mode, both of which can be used for AIS. For both ITU G.775 and ETSI ETS 300 233, the AIS condition is:

- Declared when in a 512-bit period, the receiver detects less than 3 zeroes in the data stream.
- Cleared when in a 512-bit period, the receiver detects 3 or more zeroes in the data stream.

6.3.6 Receive Alarm Indication Signal (RAIS) Enable

When an LOS condition is detected, enabling or disabling the Receive Alarm Indication Signal Enable (RAISEN) bit (bit 6) in the Global Control Register (GCR) affects the setting of the AIS Status Monitor register.

- For details on the RAISEN bit, see Table 40, "Global Control Register, GCR 0Fh" on page 88.
- For details on the AIS Status Monitor register, see Table 44, "AIS Status Monitor Register, AIS 13h" on page 89.

When an LOS condition is detected and the RAISEN bit setting is:

- '0', AIS insertion into the receive path is disabled. In this case, there is no effect on the AIS Status Monitor register.
- '1', AIS insertion into the receive path is enabled. In this case, when the signals to the RTIP and RRING inputs to a receiver are:
 - All zeroes, the receiver generates all ones on the RPOS and RNEG outputs, and the AIS Status Monitor register sets to '1'.
 - All ones, the receiver generates all ones on the RPOS and RNEG outputs, and the AIS Status Monitor register clears to '0'.

To prevent indvertent interrupts during programming, before setting or resetting RAISEN, mask the AIS interrupt enable bit for the corresponding receiver. (See Table 45, "AIS Interrupt Enable Register, AISIE - 14h" on page 89)

6.3.7 Receiver In-Service Line-Code-Violation Monitoring

Receiver in-service line-code-violation monitoring occurs only with unipolar I/O (that is, when TNEG/UBS is connected high for more than 16 consecutive MCLK cycles). In this case, when the LXT385 ransceiver is receiving a line input signal and an in-service line-code violation occurs, how this violation is reported depends on the type of decoder selected.

If the LOS Detector circuit (see Section 6.3.3, "Receiver Loss-Of-Signal Detector") detects an inservice line-code violation and theLXT385 ransceiver decoder type is:

- AMI, all bipolar violations (two consecutive pulses with the same polarity) are reported at the BPV output.
- HDB3, the following occurs:
 - First, the LXT385 ransceiver asserts the BPV pin high for one RCLK period for every bipolar violation that is not part of the zero-code substitution rules.
 - Next, the RDATA pin acts as the receive data output. (For details on the BPV and RDATA pin functions, see Section 5.3, "Framer/Mapper Signals".)

6.4 Transmitter

The LXT385 ransceiver has eight identical transmitters.

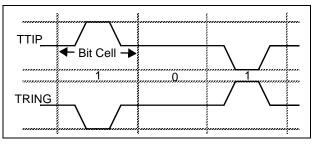
6.4.1 Transmitter Clocking

The eight low-power transmitters of the LXT385 ransceiver are identical. Transmit data is clocked serially into the device at TPOS/TNEG in bipolar mode, or at TDATA in unipolar mode. For each channel, the transmit clock (TCLK) supplies the transmitter input synchronization.

When TNEG/UBS is connected:

- High for more than 16 consecutive MCLK clock cycles, unipolar I/O is used. In this case, transmit data are clocked serially into the LXT385 ransceiver at TPOS/TDATA, and the LXT385 ransceiver routes the transmit clock and data signals to its internal encoder.
- To an output that supports bipolar mode, the line does not exhibit more than 1 bit consecutively high for any period of time and the LXT385 ransceiver automatically defaults to bipolar operation. Transmit data are clocked serially into the LXT385 ransceiver at TPOS/TNEG.

The transmitter samples TPOS/TNEG or TDATA inputs on the falling edge of TCLK. Refer to the Section 5.5, "Clocks and Clock-Related Signals" on page 43 for MCLK and TCLK timing characteristics.


If TCLK:

- Is not supplied, the transmitter output remains powered down and the TTIP/TRING outputs are held in a high-impedance tristate. Fast output tristatability is also available through the OE pin (all ports) or the port's OEx bit in the Output Enable Register (OER).
- Is supplied, the input signals that the transmitter samples depends on the TNEG/UBS setting. When TNEG/UBS is connected:
 - Low (bipolar I/O), the transmitter samples TPOS/TNEG input signals on the falling edge of TCLK.
 - High for more than 16 consecutive TCLK cycles (unipolar I/O), the transmitter samples TDATA inputs on the falling edge of TCLK.

Zero suppression is available only in Unipolar Mode. The zero-suppression type is HDB3. The LXT385 ransceiver also supports AMI line coding/decoding as shown in Figure 5.

- In Hardware mode, use the CODEN pin to select AMI coding/decoding.
- In host mode, bit 4 in the GCR (Global Control Register) selects AMI coding/decoding.

Figure 5. 50% AMI Encoding

Each output driver is supplied by its own TVCC and TGND power-supply pins. The transmit pulse shaper is bypassed if no MCLK is supplied. When in this condition, if TCLK is pulled High, then TPOS and TNEG control the pulse width and polarity on TTIP and TRING. With MCLK supplied and TCLK pulled High, the driver enters TAOS (Transmit All Ones pattern).

Note: The TAOS generator uses MCLK as a timing reference. To ensure that the output frequency is within specification limits, MCLK must have the applicable stability. TAOS is inhibited during Remote Loopback.

6.4.2 Transmitter Pulse Shaping

Pulse shaping is a means of converting an input logic '1' into a valid output mark so that the output pulse can be changed (or 'shaped') to adhere to the ITU-T G.703 pulse template (shown in Figure 31 in Chapter 13.0, "Mask Specifications").

The transmit pulse shaper is bypassed if no MCLK is supplied. In this case, if TCLK is pulled high then TPOS and TNEG control the pulse width and polarity on TTIP and TRING. With MCLK supplied and TCLK pulled High, the driver enters TAOS (Transmit All Ones pattern).

Note: The TAOS generator uses MCLK as a timing reference. To ensure that the output frequency is within specification limits, MCLK must have the applicable stability. TAOS is inhibited during Remote Loopback.

In the Hardware mode, if TCLK is connected high 16 consecutive MCLK clock cycles and MCLK is:

- Not supplied (or 'low'), the transmit pulse-shaper circuit shown in Figure 1 is bypassed (that is, disabled). In this case, TPOS and TNEG control the pulse width and polarity on TTIP and TRING.
- Supplied, the driver enters into a special mode known as Transmit All Ones, or 'TAOS'. For more information on the TAOS mode, see Section 6.8, "Transmit All Ones Operations" and Chapter 8.0, "Registers".
- *Caution:* When the pulse-shaping circuit is disabled, it is possible to overheat and damage the LXT385 ransceiver by leaving transmit inputs connected high continuously. For example, if a programmable ASIC is used in a system that uses the LXT385 ransceiver, the ASIC outputs might be left high until the ASIC is fully programmed. To prevent damage to the LXT385 ransceiver, use either one of the following practices:
 - Apply a clock to one of these signals: TPOS, TNEG, TCLK, or MCLK.
 - Set one of these signals low: TPOS, TNEG, TCLK, or OE.

Set LEN2-0 to 000.

- In hardware mode, pins LEN0-2 determine the pulse shaping.
- In host processor mode, see Table 42, "Pulse Shaping Data Register, PSDAT (11h) for Intel® LXT385 Transceiver" on page 89.

6.4.2.1 Output Driver Power Supply

The output driver power supply (TVCC pins) can be either 3.3V or 5V nominal.

- When TVCC=5V, theLXT385 ransceiver drives $75\Omega/120\Omega$ lines through a 1:2 transformer and $11\Omega/9.1\Omega$ series resistors.
- When TVCC=3.3V, the LXT385 ransceiver drives $75\Omega/120\Omega$ lines through a 1:2 transformer and 11Ω series resistor.

The Channel 4 (TVCC4) power supply pin sets 3.3V or 5.0V transmit operation. See Table 18.

Seriesresistors in the transmit configuration improve the transmit return loss performance. Good transmit return loss performance minimizes reflections in harsh cable environments. In addition, series resistors provide protection against surges coupled to the device. The resistors should be used in systems requiring protection switching without external relays. Refer to Figure 6 for the recommended external line circuitry.

6.4.2.2 Power Sequencing

For the LXT385 ransceiver, sequence TVCC first, then VCC second or at the same time as TVCC, to prevent excessive current draw.

6.4.3 Transmitter Outputs

A transmitter transmits output signals as follows:

- 1. Through a step-up transformer, a transmitter transmits an output signal, typically to either a twisted-pair or a coaxial cable. (For transformer specifications, seeFigure 6 and Chapter 12.0, "Line-Interface-Unit Circuit Specifications".)
- 2. One polarity of the output signal (the positive pulse) is transmitted at TTIP, and the other polarity (the negative pulse) is transmitted at TRING.
- *Note:* If TCLK is not supplied, the transmitter is in a powered-down state and the TTIP and TRING outputs are held in a low-power high-impedance tristate.

6.4.4 Transmitter Output Driver Power and Grounds

Each output driver is supplied by its own separate TVCC and TGND pins. The TVCC pins can be either 3.3 V or 5 V nominal. The LXT385 ransceiver drives either a 75 Ω coaxial cable or a 120 Ω twisted-pair cable.

For output drive short-circuit protection, see Section 6.5, "Line-Interface Protection".

6.4.4.1 Transmit Output Standard Power Options

The LXT385 ransceiver standard option uses a 1:2 transformer with two $R_T = 11\Omega$ resistors. This power option has more margin for return loss, compared to the low-power option discussed in the following section.

6.4.4.2 Transmitter Output Low-Power Options

The LXT385 ransceiver has a low-power option that meets all other specifications, with a built-in safety margin. This option allows a different turns ratio so that power can be saved on the LXT385 ransceiver power dissipation. To achieve this low-power option, select the turns ratio to 1:1.7 and change the R_T resistor to 10Ω (SeeFigure 6 and Table 18.)

6.5 Line-Interface Protection

Figure 6 shows circuitry for line-interface protection. (While not mandatory for normal operation, Intel[®] strongly recommends these line-interface protection elements.) For the appropriate values and tolerances of devices used with line-interface protection circuitry, seeTable 68 in Chapter 12.0, "Line-Interface-Unit Circuit Specifications".

- **Receive side.** Two $1k\Omega$ resistors protect the receiver against current surges that can couple into the LXT385 ransceiver. Due to the high receiver impedance (typically 70 k Ω), these resistors do not affect the receiver sensitivity.
- **Transmit side.** Resistors R_T and Schottky diodes D1-4 protect the output drivers from line surges. To protect the LXT385 ransceiver output driver from surge currents in excess of 100 mA, a transient voltage suppressor TVS1 (such as Teccor P0080S) is required.

For some power-up operations, on rare occasions there is no activity for several seconds on all of the following transmit-side pins: TPOS, TNEG, TCLK, and MCLK. If this lack of activity occurs for a period of several seconds, then it can cause transmitter outputs to remain in their last-known logic state. If the transmitter outputs are in static mode. As a result, then the transformer output appears as a short circuit to this static DC voltage.

In the worst case of inactivity, one of the transmitter outputs is high while other transmitter outputs are low. In this case, outputs TTIP and TRING would draw excessive current through the transformer primary windings and the LXT385 ransceiver can overheat. To manage this type of power-up operation, do only one of the following:

- Set OE low until normal operations return.
- Set TCLK low until normal operations return.
- Set TNEG low until normal operations return.
- Set TPOS low until normal operations return.
- Provide MCLK with a frequency from 10 kHz to 10 MHz until normal operations return.
- Provide TCLK with a frequency from 100 kHz to 10 MHz until normal operations return.
- Toggle TNEG with a clock from 100 kHz to 10 MHz until normal operations return.
- Toggle TPOS with a clock from 100 kHz to 10 MHz until normal operations return.
- As shown inFigure 6, add a single 0.47 uF capacitor in series with one of the R_T output resistors.

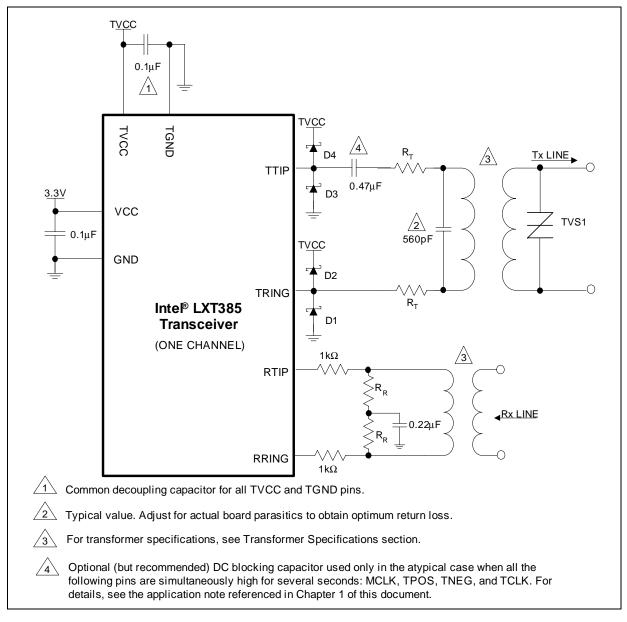


Figure 6. Intel[®] LXT385 Transceiver External Transmit/Receive Line Interface Circuitry

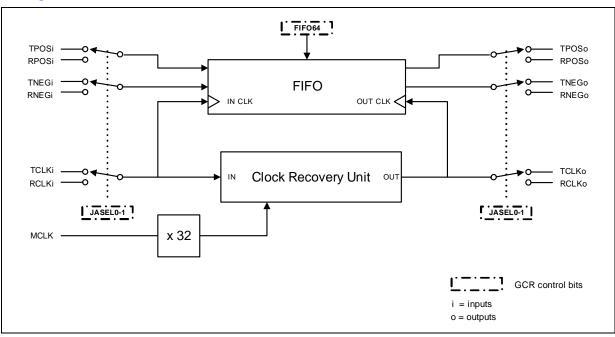
Table 18 lists the component values to use with the Figure 6 circuit, depending on the type of power used and the type of cable with which the component is used.

Table 18. Component Values to Use with Transformer Circuit

Component	Component Value to Use with 75 Ω Coaxial Cable	$\begin{array}{c} \mbox{Component Value to Use with} \\ \mbox{120} \ \Omega \ \mbox{Twisted-Pair Cable} \end{array}$
R _T Low-Power Value	10 Ω ± 1%	10 Ω ± 1%
R _T Standard-Power Value	11 Ω ± 1%	11 Ω ± 1%
R _R (Receive Resistor)	9.31 Ω ± 1%	15 Ω ± 1%

Table 19 lists the transmitter transformer turns ratios that can selected.

Table 19. Transmitter Transformer Turns Ratio Selection


Characteristic Impedance	Transmitter Transformer Turns Ratio	$\begin{array}{c} \text{Component Value to Use with} \\ \text{120 } \Omega \text{ Twisted-Pair Cable} \end{array}$
Standard 75/120Ω characteristic impedance	1:2	Rt = 11 Ω ± 1%
Low-power 75/120Ω characteristic impedance	1:1.7	Rt = 10 Ω ± 1%

6.6 Jitter Attenuation

int

Figure 7 shows the internal LXT385 ransceiver jitter attenuation (JA) unit, which requires neither an external crystal nor a reference clock that has a frequency higher than the line frequency.

Data signals are clocked into the FIFO with the associated clock signal (TCLKi or RCLKi) and are clocked out of the FIFO with the JA clock after removing jitter (TCLKo when TCLKi is used, or RCLKo when RCLKi is used). When the FIFO is within two bits of overflowing or underflowing, the FIFO adjusts the output clock by 1/8 of a bit period. For the associated path, the JA produces a constant throughput delay of either 16 bits (when a 32×2 -bit register is used) or 32 bits (when a 64×2 -bit register is used).

Figure 7. Jitter Attenuator

When the LXT385 ransceiver is in the:

- Host Processor mode:
 - The Global Control Register (GCR, Table 40) JASEL bits determine whether the JA is positioned in the receive or transmit path.
 - Depending on the GCR register FIFO64 bit setting, the depth of the FIFO used in the JA is either a 32 x 2-bit FIFO or a 64 x 2-bit FIFO. (For FIFO64 bit details, see Table 40 in Chapter 8.0, "Registers".)
 - The low-limit jitter attenuator corner frequency depends on the FIFO depth and the JACF bit setting in the GCR register. (For JACF bit details, see Table 40 in Chapter 8.0, "Registers".)
- Hardware mode:
 - The JASEL pin determines whether JA is positioned in the receive or transmit path.
 - The FIFO length is fixed to 64 bits.
 - The low-limit jitter attenuator corner frequency is fixed to 3.5 Hz. (For more information on the JA corner frequency, seeTable 70 in Chapter 14.0, "Jitter Performance".)

For information on jitter attenuation as it applies specifically to the receiver, see Section 6.6, "Jitter Attenuation".

Standard jitter-attenuation recommendations and specifications that the LXT385 ransceiver JA meets are the following. (For more recommendations and specifications, see Chapter 15.0, "Recommendations and Specifications".)

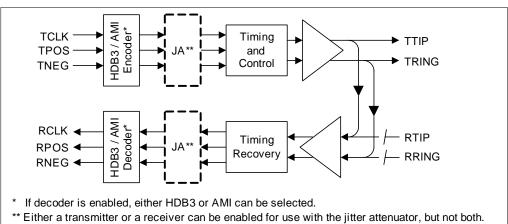
- European Telecommunications Standards Institute (ETSI) publication, ETSI CTR12/13
- International Telecommunication Union (ITU) publications:
 - ITU-T G.736
 - ITU-T G.742, when used with the SXT6234 E2-E1 mux/demux.
 - ITU-T G.783, combined jitter when used with the SXT6251 21E1 mapper.
- BAPT220

6.7 Loopbacks

For diagnostics, the LXT385 ransceiver has the following loopback modes:

- Section 6.7.1, "Analog Loopback"
- Section 6.7.2, "Digital Loopback"
- Section 6.7.3, "Remote Loopback"

To select a loopback mode when the mode is in:

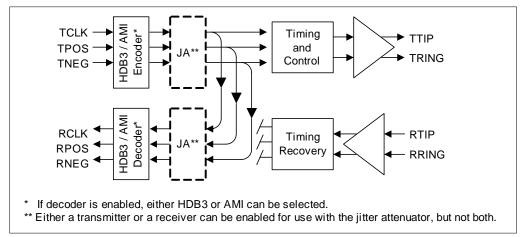

- Hardware mode, the LOOP pins can be used to select either an analog or remote loopback. (See Section 5.4, "Line Interface Unit Signals".)
- Host Processor mode, the ALOOP, DLOOP, and RLOOP registers can be used to select an analog, digital, or remote loopback. (See Chapter 8.0, "Registers".)

6.7.1 Analog Loopback

AsFigure 8 shows, when analog loopback is selected, the transmitter TTIP and TRING outputs are connected internally to the receiver inputs RTIP and RRING. For the corresponding receiver, clock and data signals are output at RCLK, RPOS, and RNEG. (For the LOOP pin settings that select analog loopback, see Section 5.4, "Line Interface Unit Signals".)

When the LXT385 ransceiver is in an analog loopback, it ignores signals on RTIP and RRING.

Figure 8. Intel[®] LXT385 Transceiver Analog Loopback


6.7.2 Digital Loopback

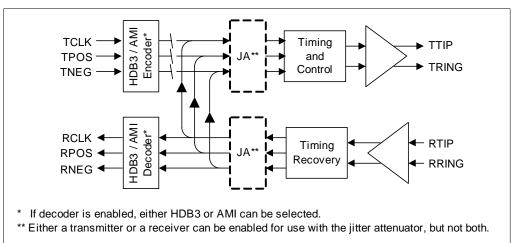
The digital loopback function is available in the Host Processor mode only.

AsFigure 9 shows, when digital loopback is selected, the transmit clock TCLK and transmit data inputs TPOS and TNEG are looped back and are output on the RCLK, RPOS, and RNEG pins. The data on TPOS and TNEG is also output on the TTIP and TRING pins. (To select digital loopback, see Table 37 in Chapter 8.0, "Registers".)

When the LXT385 ransceiver is in a digital loopback, it ignores input signals on RTIP and RRING.

Figure 9. Intel[®] LXT385 Transceiver Digital Loopback

6.7.3 Remote Loopback


int

AsFigure 10 shows, when a remote loopback is selected, the RCLK, RPOS, and RNEG outputs route to the transmit circuits, and data are output on the TTIP and TRING pins. (For the LOOP pin settings that select remote loopback, see Section 5.4, "Line Interface Unit Signals".)

When the LXT385 ransceiver is in a remote loopback:

- It ignores input signals on the TCLK, TPOS, and TNEG.
- The pulse template cannot be guaranteed in data-recovery mode.

Figure 10. Intel[®] LXT385 Transceiver Remote Loopback

6.8 Transmit All Ones Operations

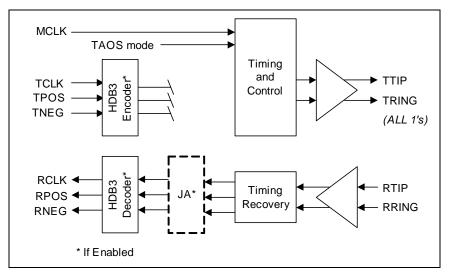
For Transmit All Ones (TAOS) operations, the LXT385 ransceiver has the following TAOS modes:

- Section 6.8.1, "TAOS Generation"
- Section 6.8.2, "TAOS Generation with Analog Loopback"
- Section 6.8.3, "TAOS Generation with Digital Loopback"

Note: The TAOS mode is inhibited during Remote loopback.

6.8.1 TAOS Generation

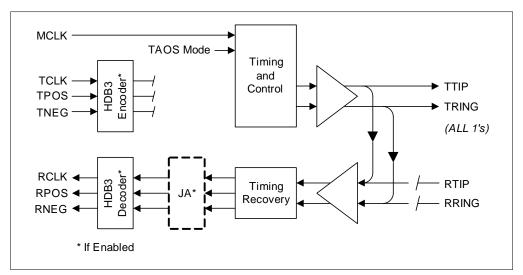
When the LXT385 ransceiver is set for a:


- Hardware mode, the TAOS mode is set by connecting the TCLK pin high for more than 16 MCLK cycles.
- Host Processor mode, the TAOS mode is set by asserting the corresponding bit in the TAOS register. In case of LOS, Automatic TAOS Select (ATS) insertion can be set with the ATS register (Table 39).

Note:

- The TAOS generator uses the clock signal on the MCLK pin as a timing reference. As a result, when the LXT385 ransceiver is set for data-recovery mode with a Motorola processor, TAOS does not work because wait states cannot be added. To ensure the output frequency is within specification limits, MCLK must have the applicable stability.
- When TAOS is active, DLOOP does not function.

Figure 11 shows how the LXT385 ransceiver generates the Transmit All Ones mode.


Figure 11. TAOS Generation for Intel[®] LXT385 Transceiver

6.8.2 TAOS Generation with Analog Loopback

Figure 12 shows how the TAOS mode affects the receive path after analog loopback.

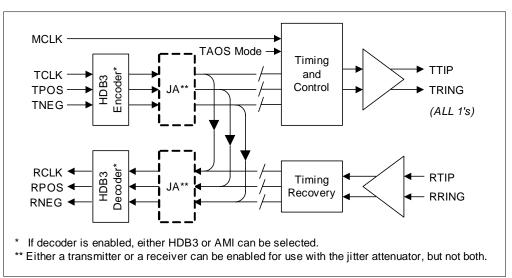


Figure 12. TAOS Generation with Analog Loopback for Intel[®] LXT385 Transceiver

6.8.3 TAOS Generation with Digital Loopback

Figure 13 shows how the TAOS mode affects the receive path after digital loopback.

Figure 13. TAOS Generation with Digital Loopback for Intel[®] LXT385 Transceiver

6.9 **Performance Monitoring**

The LXT385 ransceiver can be set for either one of the following configurations:

- All eight channels 0 through 7 operating as regular transceivers
- Channels 1 through 7 operating as regular transceivers and the channel 0 transceiver configured for non-intrusive performance monitoring of one of the other channels, per ITU-T G.722

The LXT385 ransceiver can be configured to monitor the performance of either (1) one of the lineside receivers 1 through 7 or (2) one of the line-side transmitters 1 through 7. The configuration can be performed using either the Hardware mode (see Table 14 in Section 5.7, "Signal Loss and Line-Code-Violation Signals") or the Host Processor mode (see Table 36 in Chapter 8.0, "Registers").

Performance Monitoring through Clock and Data Recovery. Performance monitoring of either (1) analog inputs to channels 1 through 7 or (2) analog outputs from any one of channels 1 through 7 can be accomplished through clock and data recovery as follows.

- 1. As shown in Figure 1 in Chapter 2.0, "Product Summary", the analog input from the channel selected for monitoring is processed by the channel 0 transceiver clock and data recovery.
- The line signal from the channel selected can then be observed digitally at RCLK0/RPOS0/ RNEG0. Channel 0 displays the appropriate LOS state for the line signal of the channel selected, both in transmit and receive directions.

Performance Monitoring through Remote Loopback. Performance monitoring of either (1) analog line inputs RTIP/RRING to any one of channels 1 through 7 or (2) analog line outputs TTIP/TRING from any one of channels 1 through 7 can be accomplished through remote loopback as follows:

- 1. Configure the LXT385 ransceiver as shown inFigure 10 in Section 6.7.3, "Remote Loopback". (TCLK must be active for remote loopback to operate.)
- 2. The monitored channel and channel 0 output the same data. By connecting the channel 0 output data (TTIP0/TRING0) to standard test equipment, the line signal from the channel selected can be monitored.
- *Note:* A benefit of performance-monitoring is that the monitored signal can be sent to channel 0, where it can be used as a timing reference clock.

6.10 Intel[®] Hitless Protection Switching

The LXT385 ransceiver has a feature that allows it to be used in an $Intel^{\[mmm]}$ Hitless Protection-Switching application. $Intel^{\[mmmm]}$ Hitless Protection-Switching is an alternative redundancy (backup) method that uses very fast silicon switching instead of slow mechanical relays. This method is best implemented using 1+1 circuitry.

The LXT385 ransceiver can provide Intel[®] Hitless Protection-Switching for the following reasons:

- The transmit outputs from the LXT385 ransceiver can be placed immediately into a highimpedance tristate, which allows two outputs to be connected directly while one output is turned off.
- The jitter attenuator produces a constant throughput delay for smooth switching of data.

For more information about $Intel^{(B)}$ Hitless Protection-Switching, see the document 1+1 Protection without Relays Using Intel^(B) LXT380/1/4/6/8 Hitless Protection Switching - Application Note listed in Section 1.3, "Related Documents".

7.0 Operating Mode Summary

This section discusses the following operating modes:

- Section 7.1, "Interfacing with 5V Logic"
- Section 7.2, "Hardware Mode"
- Section 7.3, "Hardware Mode Settings"
- Section 7.4, "Host Processor Modes"
- Section 7.5, "Interrupt Handling"

7.1 Interfacing with 5V Logic

The LXT385 ransceiver can interface directly with 5V TTL family devices. The internal input pads can tolerate 5V outputs from TTL and CMOS family devices.

7.2 Hardware Mode

The Hardware mode is selected when the MODE pin is connected low, which disables the Host Processor interface. In the Hardware mode, the Host Processor interface pins have different functions, in that they can be hard-wired to control the LXT385 ransceiver for various operation modes and to report on the status of operations.

7.3 Hardware Mode Settings

Table 20 lists LXT385 ransceiver hardware mode settings for receive, transmit, and loopback operations.

Table 20. Intel[®] LXT385 Transceiver Hardware Mode Settings for Receive, Transmit, and Loopback

TCLK (Table 8)	LOOP ¹ (Table 10)	Receive Mode ²	Transmit Mode ³	Loopback Mode ⁴
Low	Don't care	Power down	Power down	No loopback
Active	NC ⁵	Power down	Pulse shaping on	No loopback
Active	Low	Power down	Pulse shaping on	No remote loopback
Active	High	Power down	Pulse shaping on	No affect on operation
High	NC	Power down	Pulse shaping off	No loopback
High	Low	Power down	Pulse shaping off	No Remote loop
High	High	Power down	Pulse shaping off	No affect on operation
Low	NC	Data/clock recovery	Power down	No loopback
Low	Low	Data/clock recovery	Power down	No affect on operation
Low	High	Data/clock recovery	Power down	No analog loopback
Active	NC	Data/clock recovery	Pulse shaping on	No loopback
Active	Low	Data/clock recovery	Pulse shaping on	Remote loopback
Active	High	Data/clock recovery	Pulse shaping on	Analog loopback
High	NC	Data/clock recovery	Transmit all ones	No loopback
High	Low	Data/clock recovery	Pulse shaping on	Remote loopback
High	High	Data/clock recovery	Transmit all ones	No affect on operation
Low	NC	Data recovery	Power down	No loopback
Low	Low	Data recovery	Pulse shaping off	Remote loopback
Active	NC	Data recovery	Pulse shaping on	No loopback
Active	Low	Data recovery	Pulse shaping off	Remote loopback
Active	High	Data recovery	Pulse shaping on	Analog loopback
High	NC	Data recovery	Pulse shaping off	No loopback
High	Low	Data recovery	Pulse shaping off	Remote loopback
High	High	Data recovery	Pulse shaping off	Analog loopback
	(Table 8) Low Active Active High High High Low Low Low Active Active Active High High High High Low Low Active High High High High High High High High High High High	(Table 8)(Table 10)LowDon't careActiveNC5ActiveLowActiveHighHighNCHighLowHighUneLowNCLowNCLowLowActiveHighLowLowLowLowHighUneLowNCActiveNCActiveHighHighNCHighLowHighLowHighLowActiveNCLowLowActiveNCLowLowHighHighHighNCActiveLowActiveLowActiveHighHighNCHighNCHighNCHighNCHighLow	(Table 8)(Table 10)Receive Mode²LowDon't carePower downActiveNC5Power downActiveLowPower downActiveHighPower downHighNCPower downHighLowPower downHighLowPower downHighLowPower downHighLowPower downLowNCData/clock recoveryLowLowData/clock recoveryLowNCData/clock recoveryActiveNCData/clock recoveryActiveHighData/clock recoveryActiveHighData/clock recoveryHighNCData/clock recoveryHighLowData/clock recoveryHighLowData/clock recoveryHighLowData/clock recoveryLowNCData/clock recoveryLowNCData recoveryLowLowData recoveryActiveLowData recoveryActiveHighData recoveryHighNCData recoveryHighNCData recoveryHighNCData recoveryHighLowData recovery	(Table 8)(Table 10)Receive Mode*Iransmit Mode*LowDon't carePower downPower downActiveNC5Power downPulse shaping onActiveLowPower downPulse shaping onActiveHighPower downPulse shaping onHighNCPower downPulse shaping offHighLowPower downPulse shaping offHighLowPower downPulse shaping offHighLowPower downPulse shaping offLowNCData/clock recoveryPower downLowLowData/clock recoveryPower downLowMCData/clock recoveryPower downActiveNCData/clock recoveryPulse shaping onActiveNCData/clock recoveryPulse shaping onActiveLowData/clock recoveryPulse shaping onActiveLowData/clock recoveryPulse shaping onHighNCData/clock recoveryPulse shaping onHighLowData/clock recoveryPulse shaping onHighLowData/clock recoveryPulse shaping onHighLowData/clock recoveryPulse shaping onHighHighData/clock recoveryPulse shaping offActiveNCData recoveryPulse shaping offLowLowData recoveryPulse shaping offActiveHighData recoveryPulse shaping offActiveHigh

1. Hardware mode only.

2. For information on data and clock recovery, see Section 6.3.4, "Receiver Data Recovery Mode" and Section 6.3.1, "Receiver Clocking".

3. For information on pulse shaping, see Section 6.4.2, "Transmitter Pulse Shaping".

4. For information on loopbacks, see Section 6.7, "Loopbacks".

5. NC = No Connect

7.4 Host Processor Modes

When the MODE pin is connected high, the following Host Processor modes are available.

- Section 7.4.1, "Host Processor Mode Parallel Interface"
- Section 7.4.2, "Host Processor Mode Serial Interface"

7.4.1 Host Processor Mode - Parallel Interface

The parallel interface (listed in Table 3 in Section 4.1, "Operating Mode Multi-Function Pins") is used to control configuration of the LXT385 ransceiver and to report the status of various operations. The LXT385 ransceiver has a flexible, generic 8-bit parallel host processor interface designed to support both non-multiplexed and multiplexed address/data bus systems for both Motorola bus and Intel[®] bus topologies. Table 21 lists the four parallel interface modes that can be selected with the pins MODE, MOT/INTL, and MUX.

Table 21. Host Processor Mode - Parallel Interface Selections

MODE	MOT/ INTL	MUX	Interface Selected
High	Low	Low	Host Processor mode, Motorola processor parallel interface, non-multiplexed
High	Low	High	Host Processor mode, Motorola processor parallel interface, multiplexed
High	High	Low	Host Processor mode, $\operatorname{Intel}^{\$}$ processor parallel interface, non-multiplexed
High	High	High	Host Processor mode, $Intel^{\ensuremath{\mathbb{R}}}$ processor parallel interface, multiplexed

The Host Processor mode parallel interface includes an address bus (A4:0) and a data bus (D7:0) for non-multiplexed operation and an 8-bit address/data bus for multiplexed operation. The LXT385 ransceiver has a 5-bit address bus and provides 22 user-accessible 8-bit registers for configuration, alarm monitoring, and control of the LXT385 ransceiver.

Control signals that the LXT385 ransceiver and host processors have in common include \overline{ACK} /RDY, ALE, CS, DS, INT, RD, R/W, and WR. An internal wait-state generator controls the \overline{ACK} /RDY handshake output signal, which is compatible with both Motorola and Intel[®] processors. When the processor interface selected is for a:

- Motorola processor and \overline{ACK} is low, then during a:
 - Read cycle, $\overline{\text{ACK}}$ indicates that valid information is on the data bus.
 - Write cycle, ACK indicates the LXT385 ransceiver has accepted the write data from the Motorola processor.
- Intel[®] processor and RDY is:
 - Low, the LXT385 ransceiver indicates to the Intel[®] processor a bus cycle is in progress.
- *Note:* When an Intel[®] processor is used with a non-multiplexed interface, there is one exception to how write-cycle timing operates that involves the use of Register 0Ah, the reset register. At the start of the write cycle, the RDY line remains high instead of signaling the completion of the write cycle with a transition to a low state. The overall duration of the reset cycle from when the signal on CS is low to the completion of the reset cycle is a total of 3 microseconds. As a result, upon writing to Register 0Ah, allow a minimum of 2 microseconds of constant throughput delay before attempting the next read/write operation. (For more information on the reset cycle, see Table 35 in Section 8.3, "Register Descriptions".)

7.4.1.1 Host Processor Mode - Parallel Interface, Motorola* Processor

The Motorola processor interface is selected by asserting the LXT385 ransceiver $\overline{\text{MOT}}/\text{INTL}$ pin low. The R/W signal indicates if a data transfer is to be a read or write. The $\overline{\text{DS}}$ signal is the timing reference for all data transfers and typically has a duty cycle of 50%. When the Motorola processor attempts to:

- Read data from the LXT385 ransceiver, it asserts R/W high on the falling edge on DS, and the LXT385 ransceiver drives the data bus.
- Write data to the LXT385 ransceiver, it asserts R/W low on the rising edge on DS, and the Motorola processor drives the data bus.

When a Motorola processor is used, \overline{CS} and \overline{DS} can be connected. Both read and write cycles require the \overline{CS} signal to be low and the Motorola processor to actively drive the address pins. The LXT385 ransceiver supports a:

- Non-multiplexed Motorola processor parallel interface when MUX is asserted low. In nonmultiplexed mode, the falling edge of DS is used to latch the address information on the address bus, and AS must be connected high.
- Multiplexed Motorola processor parallel interface when MUX is asserted high. The address on the multiplexed address data bus is latched into the LXT385 ransceiver on the falling edge of AS.

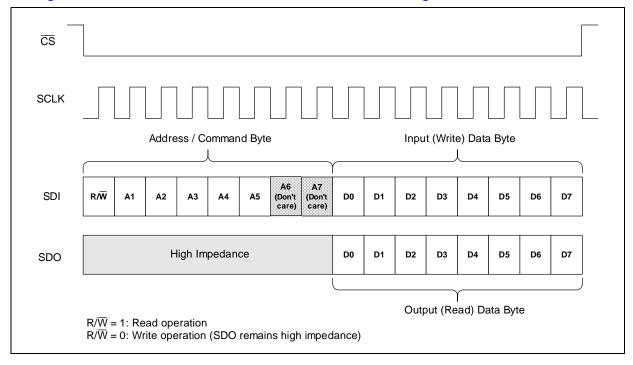
7.4.1.2 Host Processor Mode - Parallel Interface, Intel[®] Processor

The Intel[®] processor interface is selected by asserting the LXT385 ransceiver $\overline{\text{MOT}/\text{INTL}}$ pin high. Both the read and write cycles require $\overline{\text{CS}}$ to be low. When the Intel[®] processor attempts to:

- Read data from the LXT385 ransceiver, it asserts \overline{RD} low while \overline{WR} is held high.
- Write data to the LXT385 ransceiver, it asserts \overline{WR} low while \overline{RD} is held high.

The LXT385 ransceiver supports a:

- Non-multiplexed Intel[®] processor parallel interface when MUX is asserted low. In nonmultiplexed mode, ALE must be connected high and the address and data lines are separate.
- Multiplexed Intel[®] processor parallel interface when MUX is asserted high. In the multiplexed mode, the falling edge of ALE latches the address.



7.4.2 Host Processor Mode - Serial Interface

A Host Processor mode with a serial interface consisting of the \overline{CS} , SCLK, SDI, and SDO pins is selected by connecting the MODE pin to a voltage that is equal to 1/2 VCC (which can be accomplished by connecting one 10k Ω resistor to VCC and a second 10k Ω resistor to ground).

Figure 14 shows timing for the host processor interface when it is in serial mode. Registers are accessible through a 16-bit word consisting of the following:

- An 8-bit Address/Command byte.
 - The signal on the R/\overline{W} pin determines whether a read or a write operation occurs.
 - The signals on pins A1-A5 go to an address decoder that decodes an address. (The address decoder ignores signals on the A6 and A7 pins.)
- A subsequent 8-bit Data byte. (Depending on the R/\overline{W} state, the D0-D7 values are valid on either SDI or SDO, but never are the D0-D7 values valid on both SDI and SDO.)
 - When $R/\overline{W} = 0$, D0-D7 on SDO are don't cares. The D0-D7 values on SDI are active, with valid data being written to the LXT385 ransceiver.
 - When $R/\overline{W} = 1$, the D0-D7 values on SDO are active, with valid data that theLXT385 ransceiver writes to the host processor. The D0-D7 values on SDI are don't cares.

Figure 14. Host Processor Mode - Serial Interface Read Timing

7.5 Interrupt Handling

7.5.1 Interrupt Sources

Interrupt sources include the following:

- 1. Status change in the LOS (Loss of Signal) Status register (04h, Table 29). The LXT385 ransceiver continuously monitors the receiver signal and updates the specific LOS status bit to indicate either the presence or absence of an LOS condition.
- Status change in the AIS (Alarm Indication Signal) Status register (13h, Table 44). The LOS (Loss of Signal) Status register (04h, Table 29). The LOS (Loss of Signal) Status register (04h, Table 29). The LXT385 ransceiver monitors the incoming data stream and updates the specific AIS status bit to indicate either the presence or absence of a AIS condition.

7.5.2 Interrupt Enable

The LXT385 ransceiver provides a latched interrupt output (\overline{INT}). An interrupt occurs any time there is a transition on any enabled bit in the corresponding status register.

Register 06h (Table 31) is the LOS Interrupt Enable register, and register 14h (Table 45) is the AIS Interrupt Enable register. Writing a logic '1' into the corresponding mask register enables a bit in the corresponding interrupt status register to generate an interrupt. The power-on default value is all zeroes. The setting of the interrupt enable bit does not affect the operation of the status registers.

Register 08h (Table 33) is the LOS Interrupt Status register, and register 15h (Table 46) is the RAIS Interrupt Status register. When there is a transition on any enabled bit in a status register, the associated bit of the interrupt status register is set and an interrupt is generated (if one is not already pending). When an interrupt occurs, the \overline{INT} pin is asserted low. The output circuitry of the \overline{INT} pin consists of an active pull-down device (an open drain). An external pull-up resistor of approximately 10k Ω is required to support wired-OR operation with other LXT385 ransceivers.

7.5.3 Interrupt Clear

When an interrupt occurs, the interrupt service routine (ISR) operates as follows:

- 1. The ISR must read the interrupt status registers (08h and 15h) to identify the interrupt source.
- 2. The ISR must then read the corresponding status monitor register to obtain the current status of the LXT385 ransceiver.

Note:

- Reading an interrupt-status register clears the 'sticky' status bit set by the interrupt. (A 'sticky' status bit is a bit that, once set, remains set until it is explicitly cleared.) Automatically clearing an interrupt-status register prepares the register for the next interrupt.
- The status-monitor registers are the LOS Status register (04h, Table 29) and the AIS Status register (13h, Table 44). Reading a status-monitor register clears its corresponding interrupts on the rising edge of the read or data strobe. When all pending interrupts are cleared, the signal on INT goes high.

8.0 Registers

This chapter discusses the LXT385 ransceiver registers.

8.1 Register Summary

Table 22 lists LXT385 ransceiver registers by the hex address of each.

Table 22. Intel[®]LXT385 Transceiver Register Summary

Address (Hex)	Mnemonic	Cross-Reference
00	ID	Table 25, "ID Register, ID - 00h"
01	ALOOP	Table 26, "Analog Loopback Register, ALOOP - 01h"
02	RLOOP	Table 27, "Remote Loopback Register, RLOOP - 02h"
03	TAOS	Table 28, "TAOS Enable Register, TAOS - 03h"
04	LOS	Table 29, "LOS Status Monitor Register, LOS - 04h"
05	-	Reserved
06	LIE	Table 31, "LOS Interrupt Enable Register, LIE - 06h"
07	-	Reserved
08	LIS	Table 33, "LOS Interrupt Status Register, LIS - 08h"
09	-	Reserved
0A	RES	Table 35, "Reset Register, RES - 0Ah"
0B	MON	Table 36, "Performance-Monitoring Register, MON - 0Bh"
0C	DL	Table 37, "Digital Loopback Register, DL - 0Ch"
0D	LACS	Table 38, "LOS/AIS Criteria Selection Register, LACS - 0Dh"
0E	ATS	Table 39, "Automatic TAOS Select Register, ATS - 0Eh"
0F	GCR	Table 40, "Global Control Register, GCR - 0Fh"
10	-	Reserved
11	-	Reserved
12	OER	Table 43, "Output Enable Register, OER - 12h"
13	AIS	Table 44, "AIS Status Monitor Register, AIS - 13h"
14	AISIE	Table 45, "AIS Interrupt Enable Register, AISIE - 14h"
15	AISIS	Table 46, "AIS Interrupt Status Register, AISIS - 15h"

Table 23 groups the LXT385 ransceiver registers by function and lists the bit names.

Table 23. Register Bit Names

Reç	gister					Bit Na	ames			
Name	Mne- monic	RW	7	6	5	4	3	2	1	0
ID, Reset, and		Registe	rs	1						
ID	ID	R	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Reset	RES	R/W	RES7	RES6	RES5	RES4	RES3	RES2	RES1	RES0
Global Control	GCR	R/W	Re- served	RAISEN	CDIS	CODEN	FIFO64	JACF	JASEL1	JASEL0
Loopback Reg	gisters	•			•		•	•		
Analog Loopback	ALOOP	R/W	AL7	AL6	AL5	AL4	AL3	AL2	AL1	AL0
Digital Loopback	DL	R/W	DL7	DL6	DL5	DL4	DL3	DL2	DL1	DL0
Remote Loopback	RLOOP	R/W	RL7	RL6	RL5	RL4	RL3	RL2	RL1	RL0
Enable and Se	Enable and Select Registers					•				
AIS Interrupt Enable	AISIE	R/W	AISIE7	AISIE6	AISIE5	AISIE4	AISIE3	AISIE2	AISIE1	AISIE0
LOS Interrupt Enable	LIE	R/W	LIE7	LIE6	LIE5	LIE4	LIE3	LIE2	LIE1	LIE0
Output Enable	OER	R/W	OE7	OE6	OE5	OE4	OE3	OE2	OE1	OE0
TAOS Enable	TAOS	R/W	TAOS7	TAOS6	TAOS5	TAOS4	TAOS3	TAOS2	TAOS1	TAOS0
Automatic TAOS Select	ATS	R/W	ATS7	ATS6	ATS5	ATS4	ATS3	ATS2	ATS1	ATS0
LOS/AIS Criteria Select	LACS	R/W	LACS7	LACS6	LACS5	LACS4	LACS3	LACS2	LACS1	LACS0
Status and Mo	onitoring F	Registe	rs	•		•				•
AIS Interrupt Status	AISIS	R	AISIS7	AISIS6	AISIS5	AISIS4	AISIS3	AISIS2	AISIS1	AISIS0
AIS Status	AIS	R	AIS7	AIS6	AIS5	AIS4	AIS3	AIS2	AIS1	AIS0
LOS Interrupt Status	LIS	R	LIS7	LIS6	LIS5	LIS4	LIS3	LIS2	LIS1	LIS0
LOS Status Monitor	LOS	R	LOS7	LOS6	LOS5	LOS4	LOS3	LOS2	LOS1	LOS0
Performance Monitoring	MON	R/W	Re- served	Re- served	Re- served	Re- served	A3	A2	A1	A0

8.2 Register Addresses

Table 24 lists the register names and register addresses on:

- Pins A7:1 (used for the LXT385 ransceiver Host Processor mode with a serial interface)
- Pins A7:0 (used for the LXT385 ransceiver Host Processor mode with a parallel interface)

Table 24. Register Addresses for Serial and Parallel Interfaces

	Host Processor Mode	Registers Addresses		
Register Name	Serial Interface (Address from Pins A7:1)	Parallel Interface (Address from Pins A7:0)	Mode	
ID	xx00000	xxx00000	R	
Analog Loopback	xx00001	xxx00001	R/W	
Remote Loopback	xx00010	xxx00010	R/W	
TAOS Enable	xx00011	xxx00011	R/W	
LOS Status Monitor	xx00100	xxx00100	R	
LOS Interrupt Enable	xx00110	xxx00110	R/W	
LOS Interrupt Status	xx01000	xxx01000	R	
Reset	xx01010	xxx01010	R/W	
Performance Monitoring	xx01011	xxx01011	R/W	
Digital Loopback	xx01100	xxx01100	R/W	
LOS/AIS Criteria Selection	xx01101	xxx01101	R/W	
Automatic TAOS Select	xx01110	xxx01110	R/W	
Global Control	xx01111	xxx01111	R/W	
Output Enable	xx10010	xxx10010	R/W	
AIS Status Monitor	xx10011	xxx10011	R	
AIS Interrupt Enable	xx10100	xxx10100	R/W	
AIS Interrupt Status	xx10101	xxx10101	R	

8.3 Register Descriptions

Table 25. ID Register, ID - 00h

Bit	Name	Description	R/W
7:0	ID7:0	 Identification. The identification register contains a unique revision code that is factory programmed for each revision of theLXT385 ransceiver. Revision code for the LXT385 transceiver stepping A4 is 00h. Revision code for the LXT385 transceiver stepping A5 is 05h. Revision code for the LXT385 transceiver stepping B1 is 21h. 	R

Table 26. Analog Loopback Register, ALOOP - 01h

Bit	Name	Description	R/W
7:0	AL7:0	Analog Loopback. Setting one of the AL bits to '1' enables analog loopback for its corresponding transceiver.	R/W

Table 27. Remote Loopback Register, RLOOP - 02h

Bit	Name	Description	R/W
7:0	RL7:0	Remote Loopback. Setting one of the RL bits to '1' enables remote loopback for its corresponding transceiver.	R/W

Table 28. TAOS Enable Register, TAOS - 03h

Bit	Name	Description	R/W
7:0	TAOS7:0	 Transmit All Ones (Enable). On power-up, the TAOS7:0 bits are cleared to '0'. Setting one of the TAOS bits to '1' causes a continuous stream of marks (that is, ones) to be sent out to the TTIP pin and TRING pin of the corresponding transmitter. There are two possible timing references for these bits, depending on the availability of MCLK. If MCLK: Is not available, then the channel TCLK is used as the timing reference for the output. Is available, MCLK is used as the timing reference for the output. NOTE: TAOS is not available in data-recovery mode or the line-driver mode (that is, when both MCLK = High and TCLK = High). 	R/W

Table 29. LOS Status Monitor Register, LOS - 04h

Bit	Name	Description	R/W
7:0	LOS7:0	 Loss Of Signal Status Monitor. On power-up, the LOS7:0 bits are cleared to '0'. All LOS interrupts are cleared by a single read operation. Each time the LOS detector detects a valid loss-of-signal condition on a receiver, its corresponding LOS bit is set to '1'. 	R

Table 30. DFM Status Monitor Register (05h) for Intel[®] LXT385 Transceiver

Bit	Name	Function	R/W
7:0	DFM7:0	Driver Failure Monitoring Status Monitor.	R/W

Table 31. LOS Interrupt Enable Register, LIE - 06h

Bit	Name	Description	R/W
7:0	LIE7:0	 Loss Of Signal Interrupt Enable. On power-up, the LIE7:0 bits are cleared to '0' and all LOS interrupts are disabled. Writing a '1' to an LIE bit enables an LOS interrupt for its corresponding receiver. 	R/W

Table 32. DFM Interrupt Enable Register, DIE (07h) for Intel[®] LXT385 Transceiver

Bit	Name	Function	R/W
7:0	DIE7:0	Driver Failure Monitoring Interrupt Enable.	R/W

Table 33. LOS Interrupt Status Register, LIS - 08h

Bit	Name	Description	R/W
7:0	LIS7:0	 Loss Of Signal Interrupt Status. On power-up, the LIS7:0 bits are cleared to '0'. After an LOS interrupt is cleared, then each time there is a change in the LOS status of a receiver, the corresponding LIS bit is set to '1'. 	R

Table 34. DFM Interrupt Status Register, LIS - 09h

Bit	Name	Function	R/W
7:0	DIS7:0	river Failure Monitoring Interrupt Status.	

Table 35. Reset Register, RES - 0Ah

Bit	Name	Description	R/W
7:0	RES7:0	 Reset. The RES7:0 bits are used to set all LXT385 ransceiver registers to their default values. Except when using an Intel[®] processor in a non-multiplexed mode, writing to this field initiates a 1-microsecond software reset cycle. When using Intel[®] processor in a non-multiplexed mode, to use this field extend the software reset cycle time to 2 microseconds. (For more information on the software reset cycle when using an Intel[®] processor in a non-multiplexed mode - Parallel Interface".) For details on non-multiplexed and multiplexed modes, see Section 7.4, "Host Processor Modes". 	R/W

Table 36 lists and describes the A3:0 bits that can be used to monitor the performance of one of either Receivers 1 through 7 or one of Transmitters 1 through 7, depending on the setting on the A3 bit. (For more information on performance monitoring, see Section 6.9, "Performance Monitoring".)

Table 36. Performance-Monitoring Register, MON - 0Bh

Bit	Name		Description					
7:4	A7:4	Reserved.	Reserved.					
		the LXT38 monitoring • When	A3:0 are 5 ransce capabili A3 is cle	e all '0', eiver is ity. eared to	there is configu	Select). s no performance monitoring of receivers, and ured as a octalline transceiver without e following table is used to select how to receivers.		
		0	0	0	0	No performance monitoring		
		0	0	0	1	Performance monitoring of Receiver 1		
l		0	0	1	0	Performance monitoring of Receiver 2		
		0	0	1	1	Performance monitoring of Receiver 3		
		0	1	0	0	Performance monitoring of Receiver 4		
		0	1	0	1	Performance monitoring of Receiver 5		
		0	1	1	0	Performance monitoring of Receiver 6		
3:0	A3:0	0	1	1	1	Performance monitoring of Receiver 7	R/W	
			the pe	rforman	ce of tra	ansmitt	lowing table is used to select how to monitor ers. (Transmitter monitoring is not supported I is set to analog loopback mode.) Selection	
		1	0	0	0	No performance monitoring		
		1	0	0	1	Performance monitoring of Transmitter 1		
		1	0	1	0	Performance monitoring of Transmitter 2		
		1	0	1	1	Performance monitoring of Transmitter 3		
		1	1	0	0	Performance monitoring of Transmitter 4		
		1	1	0	1	Performance monitoring of Transmitter 5		
		1	1	1	0	Performance monitoring of Transmitter 6		
		1	1	1	1	Performance monitoring of Transmitter 7		

Table 37. Digital Loopback Register, DL - 0Ch

Bit	Name	Description	R/W
7:0	DL7:0	 Digital Loopback. On power-up, the DL7:0 bits are cleared to '0', and all digital loopback channels are disabled. Setting a DL bit to '1' enables digital loopback for its corresponding transceiver. During digital loopback, LOS and TAOS stay active and independent of TCLK, while data received on TPOS, TNEG, and CKLK loop back to RPOS, RNEG, and RCLK. 	R/W

Table 38. LOS/AIS Criteria Selection Register, LACS - 0Dh

Bit	Name	Description	R/W
7:0	LACS7:0	 Loss of Signal / Alarm Indication Signal Selection Criteria. At power-up, all LACS7:0 bits are cleared to '0'. After power-up, programming an LACS bit to: '0' selects the ITU G.775 mode [for LOS, AIS, and remote detect indication (RDI)] for its corresponding receiver. '1' selects the ETSI 300 233 LOS and AIS detection mode for the corresponding receiver. 	R/W

Table 39. Automatic TAOS Select Register, ATS - 0Eh

Bit	Name	Description	R/W
7:0	ATS7:0	 Automatic Transmit-All-Ones Select. On power-on, all ATS7:0 bits are cleared to '0'. When this field is set to '1', then when there is an LOS condition, TAOS can be generated automatically. NOTE: This register does not work during either data-recovery mode or line-driver mode (that is, when both MCLK = High and TCLK = High). 	R/W

Table 40.	Global	Control	Register,	GCR - 0Fh
-----------	--------	---------	-----------	-----------

7 - Reserved. R/W 6 RAISEN Receive Alarm Indication Signal Enable. This bit controls automatic AIS insertion is the receive path when LOS occurs. • 0 = Receive path AIS insertion is disabled on LOS. • 6 RAISEN • 1 = Receive path AIS insertion is enabled on LOS. • 1 = Receive path AIS insertion is enabled on LOS. R/W 6 NOTE: This feature is not available in data-recovery mode (that is, when MCLK is high). When changing the value of the RAISEN bit, disable AIS interrupts to prevent inadvertent interrupts. R/W 5 CDIS Circuit Disable. This bit enables/disables the short-circuit protection feature for the transmitters. • 0 = Enable • 1 = Disable R/W 4 CODEN Code Enable. This bit selects one of two available zero-suppression codes. Zero suppression operations are available only with unipolar I/O. • 0 = High-Density Bipolar three (HDB3) • 1 = Alternate Mark Inversion, or 'AMI'. The following figure shows AMI coding that is 1:1 (or '50%'), indicating that for every one bit sit to a '1', there is a corresponding '0' logic state. R/W 3 FIFO64 First-In First-Out 64-Bit Select. This bit determines the jitter attenuator FIFO depth as follows: • 0 = Jitter attenuator FIFO is 26 bits deep. R/W	Bit	Name	Description	R/W				
6 RAISEN This bit controls automatic AIS insertion in the receive path when LOS occurs. • 0 = Receive path AIS insertion is disabled on LOS. • 1 = Receive path AIS insertion is enabled on LOS, and the effective output appears on RPOS/RNEG. R/W 5 NOTE: This feature is not available in data-recovery mode (that is, when MCLK is high). When changing the value of the RAISEN bit, disable AIS interrupts to prevent inadvertent interrupts. R/W 5 CDIS Circuit Disable. This bit enables/disables the short-circuit protection feature for the transmitters. • 0 = Enable 5 CDIS Circuit Disable. This bit selects one of two available zero-suppression codes. Zero suppression operations are available only with unipolar I/O. • 0 = High-Density Bipolar three (HDB3) R/W 4 CODEN TIP	7	-	Reserved. F					
5 CDIS This bit enables/disables the short-circuit protection feature for the transmitters. • 0 = Enable • 1 = Disable R/W 4 Code Enable. This bit selects one of two available zero-suppression codes. Zero suppression operations are available only with unipolar I/O. • 0 = High-Density Bipolar three (HDB3) • 0 = High-Density Bipolar three (HDB3) • 1 = Alternate Mark Inversion, or 'AMI'. The following figure shows AMI coding that is 1:1 (or '50%), indicating that for every one bit sit to a '1', there is a corresponding '0' logic state. R/W 4 CODEN First-In First-Out 64-Bit Select . R/W 3 FIFO64 First-In First-Out 64-Bit Select . This bit determines the jitter attenuator FIFO depth as follows: • 0 = Jitter attenuator FIFO is 32 bits deep. • 1 = Jitter attenuator FIFO is 64 bits deep. R/W	6	RAISEN	 This bit controls automatic AIS insertion in the receive path when LOS occurs. 0 = Receive path AIS insertion is disabled on LOS. 1 = Receive path AIS insertion is enabled on LOS, and the effective output appears on RPOS/RNEG. NOTE: This feature is not available in data-recovery mode (that is, when MCLK is high). When changing the value of the RAISEN bit, disable 	R/W				
4 CODEN This bit selects one of two available zero-suppression codes. Zero suppression operations are available only with unipolar I/O. • 0 = High-Density Bipolar three (HDB3) 4 CODEN • 1 = Alternate Mark Inversion, or 'AMI'. The following figure shows AMI coding that is 1:1 (or '50%), indicating that for every one bit sit to a '1', there is a corresponding '0' logic state. R/W 3 FIFO64 First-In First-Out 64-Bit Select. This bit determines the jitter attenuator FIFO depth as follows: R/W 3 FIFO64 First attenuator FIFO is 32 bits deep. • 1 = Jitter attenuator FIFO is 64 bits deep. R/W	5	CDIS	This bit enables/disables the short-circuit protection feature for the transmitters.0 = Enable	R/W				
3 FIFO64 This bit determines the jitter attenuator FIFO depth as follows: R/W • 0 = Jitter attenuator FIFO is 32 bits deep. • 1 = Jitter attenuator FIFO is 64 bits deep.	4	CODEN	 This bit selects one of two available zero-suppression codes. Zero suppression operations are available only with unipolar I/O. 0 = High-Density Bipolar three (HDB3) 1 = Alternate Mark Inversion, or 'AMI'. The following figure shows AMI coding that is 1:1 (or '50%'), indicating that for every one bit sit to a '1', there is a corresponding '0' logic state. 					
litter Attenuator Corner Frequency	3	FIFO64	 This bit determines the jitter attenuator FIFO depth as follows: 0 = Jitter attenuator FIFO is 32 bits deep. 					
2 JACF This bit determines the jitter attenuator low-limit 3-dB corner frequency. For more information, see Chapter 14.0, "Jitter Performance".	2	JACF	This bit determines the jitter attendator few limit of ab conter negatively. For					
1:0 Jitter Attenuator Select. These bits determine the jitter attenuator position as follows: 1:0 JASEL1:0 JASEL1:0 JASEL0 JItter Attenuator Position x 0 Jitter attenuator is disabled. 0 1 Jitter attenuator position is the transmit path. 1 1	1:0	Jitter Attenuator Select. These bits determine the jitter attenuator position as follows: JASEL1:0 JASEL1 JASEL0 Jitter Attenuator Position 1:0 JASEL1:0 Jitter attenuator of Jitter Attenuator Position						
	1. On	power-on rese	t, the register is set to '0'.	1				

Bit ¹	Name		Function				
		The three bit value written to these bits determine the channel to be addressed. Data can be read from (written to) the Pulse Shaping Data Register (PSDAT).					
		LENAD 0-2	<u>Channel</u>	LENAD 0-2	<u>Channel</u>		
0-2	LENAD 0-2	0h	0	4h	4		
		1h	1	5h	5		
		2h	2	6h	6		
		3h	3	7h	7		
3 - 7	-	Reserved.					
1. Or	n power-on reset	the register is s	et to "0".				

Table 41. Pulse Shaping Indirect Address Register, PSIAD (10h)

Table 42. Pulse Shaping Data Register, PSDAT (11h) for Intel[®] LXT385 Transceiver

Bit ¹	Name	Function
0-2	LEN2-0	Set to 000.
3 - 7	-	Reserved.

Table 43. Output Enable Register, OER - 12h

Bit	Name	Description	
7:0	OE7:0	 Output Enable. On power-up, all OE7:0 bits are cleared to '0'. When an OE bit is set to '1', the output driver of its corresponding transmitter goes into a high-impedance tristate. 	R/W

Table 44. AIS Status Monitor Register, AIS - 13h

Bit	Name	Description	R/W
7:0	AIS7:0	 Alarm Indication Signal Status Monitor. On power-up, all AIS7:0 bits are cleared to '0'. All AIS interrupts are cleared by a single read operation. Each time a channel receiver detects an AIS condition, its corresponding AIS bit is set to '1'. 	R

Table 45. AIS Interrupt Enable Register, AISIE - 14h

E	Bit	Name	Description	R/W	
7	7:0	AISIE7:0	 Alarm Indication Signal Interrupt Enable. On power-up, all AISIE7:0 bits are cleared to '0'. When an AISIE bit is set to '1', it enables an AIS interrupt for its corresponding receiver. 	R/W	

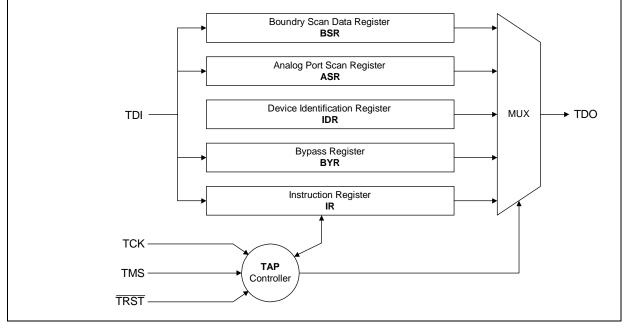
Table 46.	AIS Interrup	t Status Reg	gister, AISIS - 15h
-----------	---------------------	--------------	---------------------

Bit	Name	Description	R/W
7:0	AISIS7:0	 Alarm Indication Signal Interrupt Status. On power-up, all AISIS7:0 bits are cleared to '0'. Each time there is a change in the AIS status of a receiver, its corresponding AISIS bit is set to '1'. After the host processor reads this register, all AISIS bits clear to '0'. 	R

9.0 JTAG Boundary Scan

9.1 Overview

The LXT385 ransceiver supports IEEE 1149.1 compliant JTAG boundary scan. Boundary scan allows easy access to the interface pins for board testing purposes.


In addition to the traditional IEE1149.1 digital boundary scan capabilities, theLXT385 ransceiver also includes analog test port capabilities. This feature provides access to the TIP and RING signals in each channel (transmit and receive). This way, the signal path integrity across the primary winding of each coupling transformer can be tested.

9.2 Architecture

The basic JTAG architecture of the LXT385 ransceiver is illustrated in Figure 15.

The LXT385 ransceiver JTAG architecture includes a TAP Test Access Port Controller, data registers and an instruction register. The following paragraphs describe these blocks in detail.

9.3 TAP Controller

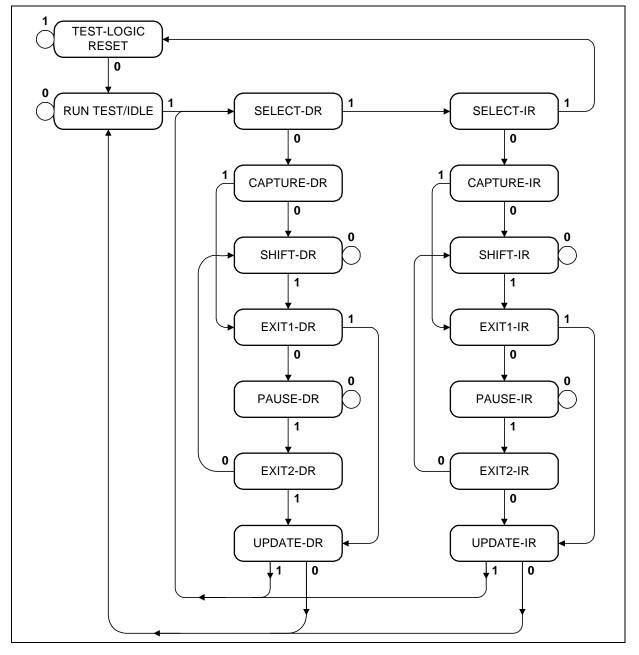

The TAP controller is a 16-state synchronous state machine controlled by the TMS input and clocked by TCK (see Figure 16). The TAP controls whether the LXT385 ransceiver is in reset mode, receiving an instruction, receiving data, transmitting data or in an idle state. Table 47 describes in detail each of the states represented in Figure 16.

Table 47. TAP State Description

State	Description
Test Logic Reset	In this state the test logic is disabled. The device is set to normal operation mode. While in this state, the instruction register is set to the ICODE instruction.
Run -Test / Idle	The TAP controller stays in this state as long as TMS is Low. Used to perform tests.
Capture - DR	The Boundary Scan Data Register (BSR) is loaded with input pin data.
Shift - DR	Shifts the selected test data registers by one stage toward its serial output.
Update - DR	Data is latched into the parallel output of the BSR when selected.
Capture - IR	Used to load the instruction register with a fixed instruction.
Shift - IR	Shifts the instruction register by one stage.
Update - IR	Loads a new instruction into the instruction register.
Pause - IR Pause - DR	Momentarily pauses shifting of data through the data/instruction registers.
Exit1 - IR Exit1 - DR Exit2 - IR Exit2 - DR	Temporary states that can be used to terminate the scanning process.

Figure 16. JTAG State Diagram

9.4 JTAG Register Description

The following paragraphs describe each of the registers represented in Figure 15.

9.4.1 Boundary Scan Register (BSR)

The BSR is a shift register that provides access to all the digital I/O pins. The BSR is used to apply and read test patterns to/from the board. Each pin is associated with a scan cell in the BSR register. Bidirectional pins or tristate pins require more than one position in the register. Table 48 shows the BSR scan cells and their functions. Data into the BSR is shifted in LSB first.

The Analog Test Port can be used to verify continuity across the coupling transformer's primary winding as shown in Figure 17. By applying a stimulus to the AT1 input, a known voltage will appear at AT2 for a given load. This, in effect, tests the continuity of a receive or transmit interface.

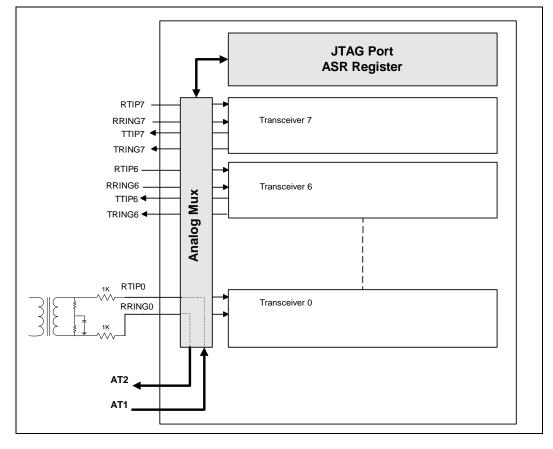
Bit #	Pin Signal	I/O Type	Bit Symbol	Comments
0	LOOP0	I/O	PADD0	
1	LOOP0	I/O	PDO0	
2	LOOP1	I/O	PADD1	
3	LOOP1	I/O	PDO1	
4	LOOP2	I/O	PADD2	
5	LOOP2	I/O	PDO2	
6	LOOP3	I/O	PADD3	
7	LOOP3	I/O	PDO3	
8	LOOP4	I/O	PADD4	
9	LOOP4	I/O	PDO4	
10	LOOP5	I/O	PADD5	
11	LOOP5	I/O	PDO5	
12	LOOP6	I/O	PADD6	
13	LOOP6	I/O	PDO6	
14	LOOP7	I/O	PADD7	
15	N/A	-	PDOENB	PDOENB controls the LOOP0 through LOOP7 pins. Setting PDOENB to "0" configures the pins as outputs. The output value to the pin is set in PDO[07]. Setting PDOENB to "1" tristates all the pins. The input value to the pins can be read in PADD[07].
16	LOOP7	I/O	PDO7	
17	TCLK1	I	TCLK1	
18	TPOS1	I	TPOS1	
19	TNEG1	I	TNEG1	
20	RCLK1	0	RCLK1	
21	RPOS1	0	RPOS1	

Table 48. Boundary Scan Register (BSR) (Sheet 1 of 4)

Table 48. Boundary Scan Register (BSR) (Sheet 2 of 4)

Bit #	Pin Signal	I/O Type	Bit Symbol	Comments
22	N/A	-	HIZ1	HIZ1 controls the RPOS1, RNEG1 and RCLK1 pins. Setting HIZ1 to "0" enables output on the pins. Setting HIZ1 to "1" tristates the pins.
23	RNEG1	0	RNEG1	
24	LOS1	0	LOS1	
25	TCLK0	I	TCLK0	
26	TPOS0	I	TPOS0	
27	TNEG0	I	TNEG0	
28	RCLK0	0	RCLK0	
29	RPOS0	0	RPOS0	
30	N/A	-	HIZO	HIZ0 controls the RPOS0, RNEG0 and RCLK0 pins. Setting HIZ0 to "0" enables output on the pins. Setting HIZ0 to "1" tristates the pins.
31	RNEG0	0	RNEG0	
32	LOS0	0	LOS0	
33	MUX	I	MUX	
34	LOS3	0	LOS3	
35	RNEG3	0	RNEG3	
36	N/A	-	HIZ3	HIZ3 controls the RPOS3, RNEG3 and RCLK3 pins. Setting HIZ3 to "0" enables output on the pins. Setting HIZ3 to "1" tristates the pins.
37	RPOS3	0	RPOS3	
38	RCLK3	0	RCLK3	
39	TNEG3	I	TNEG3	
40	TPOS3	I	TPOS3	
41	TCLK3	I	TCLK3	
42	LOS2	0	LOS2	
43	RNEG2	0	RNEG2	
44	N/A	-	HIZ2	HIZ2 controls the RPOS2, RNEG2 and RCLK2 pins. Setting HIZ2 to "0" enables output on the pins. Setting HIZ2 to "1" tristates the pins.
45	RPOS2	0	RPOS2	
46	RCLK2	0	RCLK2	
47	TNEG2	I	TNEG2	
48	TPOS2	I	TPOS2	
49	TCLK2	I	TCLK2	
50	INT	0	INT	
51	N/A	-	SDOACKENB	SDOACKENB controls the \overline{ACK} pin. Setting SDOACKEN to "0" enables output on ACK pin. Setting SDOACKEN to "1" tristates the pin.
52	ACK	0	ACK	

Table 48.	Boundary	Scan	Register	(BSR)	(Sheet 3 of 4)	
				(,	(•••••••••••••	


	-			
Bit #	Pin Signal	I/O Type	Bit Symbol	Comments
53	DS	I	WRB	
54	R/W	I	RDB	
55	ALE	I	ALE	
56	CS	I	CSB	
57	MOT/INTL	I	ΜΟΤΟ	
58	TCLK5	I	TCLK5	
59	TPOS5	I	TPOS5	
60	TNEG5	I	TNEG5	
61	RCLK5	0	RCLK5	
62	RPOS5	0	RPOS5	
63	N/A	-	HIZ5	HIZ5 controls the RPOS5, RNEG5 and RCLK5 pins. Setting HIZ5 to "0" enables output on the pins. Setting HIZ5 to "1" tristates the pins.
64	RNEG5	0	RNEG5	
65	LOS5	0	LOS5	
66	TCLK4	I	TCLK4	
67	TPOS4	I	TPOS4	
68	TNEG4	I	TNEG4	
69	RCLK4	0	RCLK4	
70	RPOS4	0	RPOS4	
71	N/A	-	HIZ4	HIZ4 controls the RPOS4, RNEG4 and RCLK4 pins. Setting HIZ4 to "0" enables output on the pins. Setting HIZ4 to "1" tristates the pins.
72	RNEG4	0	RNEG4	
73	LOS4	0	LOS4	
74	OE	I	OE	
75	CLKE	I	CLKE	
76	LOS7	0	LOS7	
77	RNEG7	0	RNEG7	
78	N/A	-	HIZ7	HIZ7 controls the RPOS7, RNEG7 and RCLK7 pins. Setting HIZ7 to "0" enables output on the pins. Setting HIZ7 to "1" tristates the pins.
79	RPOS7	0	RPOS7	
80	RCLK7	0	RCLK7	
81	TNEG7	I	TNEG7	
82	TPOS7	I	TPOS7	
83	TCLK7	I	TCLK7	
84	LOS6	0	LOS6	
85	RNEG6	0	RNEG6	

Bit #	Pin Signal	I/O Type	Bit Symbol	Comments
86	N/A	-	HIZ6	HIZ6 controls the RPOS6, RNEG6 and RCLK6 pins. Setting HIZ6 to "0" enables output on the pins. Setting HIZ6 to "1" tristates the pins.
87	RPOS6	0	RPOS6	
88	RCLK6	0	RCLK6	
89	TNEG6	I	TNEG6	
90	TPOS6	I	TPOS6	
91	TCLK6	I	TCLK6	
92	MCLK	I	MCLK	
93	MODE	I	MODE	
94	A4	I	A4	
95	A3	I	A3	
96	A2	I	A2	
97	A1	I	A1	
98	A0	I	A0	

Table 48. Boundary Scan Register (BSR) (Sheet 4 of 4)

Figure 17. Analog Test Port Application

9.4.2 Analog Port Scan Register (ASR)

The ASR is a 5 bit shift register used to control the analog test port at pins AT1, AT2. When the INTEST_ANALOG instruction is selected, TDI connects to the ASR input and TDO connects to the ASR output. After 5 TCK rising edges, a 5 bit control code is loaded into the ASR. Data into the ASR is shifted in LSB first.

Table 49 shows the 16 possible control codes and the corresponding operation on the analog port.

Table 49. Analog Port Scan Register (ASR)

ASR Control Code	AT1 Forces Voltage To:	AT2 Senses Voltage From:
11111	TTIP0	TRING0
11110	TTIP1	TRING1
11101	TTIP2	TRING2
11100	TTIP3	TRING3
11011	TTIP4	TRING4
11010	TTIP5	TRING5
11001	TTIP6	TRING6
11000	TTIP7	TRING7
10111	RTIP0	RRING0
10110	RTIP1	RRING1
10101	RTIP2	RRING2
10100	RTIP3	RRING3
10011	RTIP4	RRING4
10010	RTIP5	RRING5
10001	RTIP6	RRING6
10000	RTIP7	RRING7

9.4.3 Device Identification Register (IDR)

The IDR register provides access to the manufacturer number, part number and the LXT385 ransceiver revision. The register is arranged per IEEE 1149.1 and is represented in Table 50. Data into the IDR is shifted in LSB first.

Table 50. Device Identification Register (IDR)

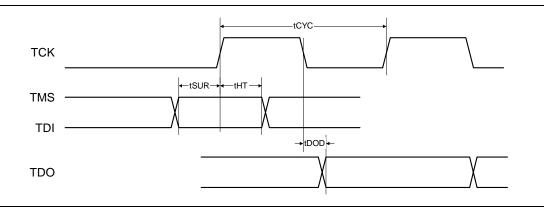
Bit #	Comments
31 - 28	Revision number
27 - 12	Part number
11 - 1	Manufacturer number
0	Set to "1"

9.4.4 Bypass Register (BYR)

The Bypass Register is a 1 bit register that allows direct connection between the TDI input and the TDO output.

9.4.5 Instruction Register (IR)

The IR is a 3 bit shift register that loads the instruction to be performed. The instructions are shifted LSB first. Table 51 shows the valid instruction codes and the corresponding instruction description.


Table 51. Instruction Register (IR)

Instruction	Code #	Comments
EXTEST	000	Connects the BSR to TDI and TDO. Input pins values are loaded into the BSR. Output pins values are loaded from the BSR.
INTEST_ANALOG	010	Connects the ASR to TDI and TDO. Allows voltage forcing/sensing through AT1 and AT2. Refer to Table 49.
SAMPLE / PRELOAD	100	Connects the BSR to TDI and TDO. The normal path between the LXT385ransceiver logic and the I/O pins is maintained. The BSR is loaded with the signals in the I/O pins.
IDCODE	110	Connects the IDR to the TDO pin.
BYPASS	111	Serial data from the TDI input is passed to the TDO output through the 1 bit Bypass Register.

Table 52. JTAG Timing Characteristics

Parameter	Sym	Min.	Тур	Max	Unit	Test Conditions
Cycle time	Тсус	200	-	-	ns	
J-TMS/J-TDI to J-TCK rising edge time	Tsut	50	-	-	ns	
J-CLK rising to J-TMS/L-TDI hold time	Tht	50	-	-	ns	
J-TCLK falling to J-TDO valid	Tdod	-	-	50	ns	

Figure 18. JTAG Timing

10.0 Electrical Characteristics

The tables in this chapter specify the electrical characteristics of the LXT385 ransceiver. The specifications are guaranteed by test except, where noted, by design. The minimum and maximum values listed are guaranteed over the specified recommended operating conditions.

Table 53 lists the absolute maximum ratings for the LXT385 ransceiver.

Table 53. Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Unit
Voltages and Power				
DC supply core voltage for VCC1:0 and VCCIO1:0 (referenced to ground)	V_{CC} and V_{CCIO}	-0.5	4.0	V
DC supply I/O voltage for TVCC7:0 (referenced to ground)	TV _{CC}	-0.5	7.0	V
Input voltage on any digital pin	V _{IN}	GND - 0.5	5.5	V
Input voltage on RTIP, RRING ¹	V _{IN}	GND - 0.5	VCC0 + 0.5 VCC1 + 0.5	V
ESD voltage on any pin ²	V _{IN}	2000		V
Maximum power dissipation in package	P _{Max}		1.6	W
Currents				
Transient latch-up current on any pin	I _{IN}		100	mA
Input current on any digital pin ³	I _{IN}	-10	10	mA
DC input current on TTIP, TRING ³	I _{IN}		±100	mA
DC input current on RTIP, RRING ³	I _{IN}		±100	mA
Temperatures				
Storage temperature	T _{STG}	-65	+150	°C
Case temperature, LQFP	T _{CASE}		120	°C
Case temperature, PBGA	T _{CASE}		120	°C
 Caution: Exceeding these values can cause perman conditions is not implied. Exposure to absol affect the device reliability. 1. Referenced to ground. 2. ESD sensitivity classification: Human body model 3. Constant input current. 	ute maximum rating			ods can

Table 54 lists recommended values for LXT385 ransceiver operating conditions.

Table 54. Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Ambient operating temperature	T _A	-40	25	+85	°C
Average digital power supply current ^{1, 2}	I _{VCC}		90	120	mA
Output load at TTIP and TRING	RL	25			Ω
DC Supply Voltages					
DC supply core voltage for VCC1:0 and VCCIO1:0 (referenced to ground)	V _{CC}	3.14	3.30	3.47	V
DC supply voltage rise time ³	V _{CC}	0		25	ms
DC supply voltage for TVCC7:0 = 5-V nominal	TV _{CC}	4.75	5.0	5.25	V
DC supply voltage for TVCC7:0 = 3.3-V nominal	TV _{CC}	3.14	3.30	3.47	V
1. Current consumption over full range of the operating t	emperature a	nd power :	supply volta	age for the L	XT385

1. Current consumption over full range of the operating temperature and power supply voltage for the LX1385 ransceiver. Includes all channels.

2. Digital inputs are within 10% of the supply rails, and digital outputs are driving a 50-pF load.

If the DC supply voltage rise time exceeds 25 ms, see the LXT385 ransceiver application note on slow power-up rise time referenced in Chapter 1.0, "Introduction to this Document".

Table 55 lists power consumption values for the LXT385 ransceiver.

Table 55. Intel[®] LXT385 Transceiver Power Consumption

	Transmit Transmit 1:2 Transformer 1:1.7 Transformer						
Parameter	Туріс	Maximu m ^{1,2}	Typical	Maximu m ^{1,2}	Unit	Test Condition	
тусс	Load	al	m.,-		m.,-		
	75Ω	760				mW	50% marks (1:1)
3.3V	7 3 2 2	1270	1420			mW	100% ones (marks)
5.57	120Ω	640				mW	50% marks (1:1)
	12052	1110	1280			mW	100% ones (marks)
	75Ω	1000				mW	50% marks (1:1)
5.0V	7 322	1730	1940			mW	100% ones (marks)
(1:2 trans- former)	120Ω	820				mW	50% marks (1:1)
	12052	1500	1730			mW	100% ones (marks)
5.01/	75Ω	850				mW	50% marks (1:1)
5.0V (Low power -	7 322	1450	1650			mW	100% ones (marks)
1:1.17 trans- former)	120Ω	700				mW	50% marks (1:1)
	12032	1260	1450			mW	100% ones (marks)
LXT385 tran	sceiver. I	ncludes	all channels				supply voltage for the LXT385 transceiver

The LXT385 transceiver dissipates power in two ways:

- Power dissipation of the transceiver itself.
- Load power dissipation on external resistors and capacitors.

The maximum load power (current draw) for the LXT385transceiver is the sum of these two power dissipation factors.

Table 56 lists load power consumption values. Load includes the power being dissipated in the two RT resistors, the termination resistor, cables, and the transformer.

			insmit Insformer		ismit nsformer		
Parameter		Туріс	Maximu m ^{1,2}	Typical	Maximu m ^{1,2}	Unit	Test Condition
TVCC	Load	al	m ź		m ź		
	75Ω	760				mW	50% marks (1:1)
3.3V	7 322	1270	1420			mW	100% ones (marks)
3.3V	120Ω	640				mW	50% marks (1:1)
	12052	1110	1280			mW	100% ones (marks)
	75Ω	1000				mW	50% marks (1:1)
5.0V	7 322	1730	1940			mW	100% ones (marks)
(1:2 trans- former)	120Ω	820				mW	50% marks (1:1)
	12012	1500	1730			mW	100% ones (marks)
	75Ω	850				mW	50% marks (1:1)
5.0V (Low power -	7 322	1450	1650			mW	100% ones (marks)
1:1.17 trans- former)	120Ω	700				mW	50% marks (1:1)
ionnor)	12002	1260	1450			mW	100% ones (marks)
LXT385 rans	ceiver. Ir	ncludes a	all channels.				supply voltage for the LXT385 ransceiver

Table 56. Load³ Power Consumption

a rower consumption includes power absorbed by the line load external to the X1305 fansceiver drivers.
 Load includes the power being dissipated in the two RT resistors, the termination resistor, cables, and

3. Load includes the power being dissipated in the two RT resistors, the termination resistor, cables, and transformer

Table 57 lists the DC characteristics for the LXT385 ransceiver.

Table 57. DC Characteristics

Parameter	Sym.	Min.	Тур.	Max.	Unit	Test Condition
Low-level input voltage	V _{IL}			0.8	V	
High-level input voltage	V _{IH}	2.0			V	
Low-level output voltage ¹	V _{OL}	0.0		0.4	V	I _{OUT} = 1.6 mA
High-level output voltage ¹	V _{OH}	2.4		VCCIO	V	I _{OUT} = 400 μA
TTIP, TRING - output current	I _{HZ}			+/- 1	μA	
HIgh-impedance tristate leakage current	lhz	-10		+10	μA	
Input leakage current - Except for TDI, TMS, TRST	lil	-10		+10	μA	
Input leakage current - Special cases - TDI, TMS, TRST	lil			50	μA	
Special Input Conditions for JAS	SEL, LOO	P7:0, and MOD	Ε			•
High-level input voltage	V _{INH}	(2/3 VCC) + 0.2 ²			V	
Low-level input current	I _{INL}			50	μA	
High-level input current	I _{INH}			50	μA	
1. Output drivers output CMOS lo 2. VCC supply refers to VCC0 or V			ls.		•	

Table 58 lists the AC characteristics for the LXT385 ransceiver transmitter.

Table 58. Intel[®] LXT385 Transceiver AC Transmitter Characteristics

Parameter	Min.	Тур.	Max.	Unit	Test Condition
Pulse-Sequence Differences and Pulse-Width	Ratio				
Difference between pulse sequences			200	mV	Observed for more than 16 consecutive pulses
Pulse-width ratio of positive to negative pulses (and negative to positive pulses)	0.95		1.05		At nominal half amplitude
Transmit Pulse Amplitude					
75Ω coaxial cable	2.14	2.37	2.60	V	Tested at line side
120Ω twisted-pair cable	2.7	3.0	3.3	V	Tested at line side
Transmit Peak Voltage of a Space on a Cable					
75Ω coaxial cable	-0.24		0.24	V	
120Ω twisted-pair cable	-0.3		0.3	V	
Transmit Amplitude Variations, Intrinsic Jitte	r, and Sho	ort-Circuit	Current		
Transmit amplitude variations due to supply voltage variations	-1		+1	%	
Transmit intrinsic jitter - 20 Hz to 100 kHz		0.03	0.05	U.I.	Tx path TCLK is jitter free
Transmit line short-circuit current for 2 x 11 Ω series resistors and 1:2 transformer			50	mA RMS	
Transmit Path Delay					
Bipolar mode		2		U.I.	Jitter attenuator
Unipolar mode		7		U.I.	disabled
Transmit Return Loss Using Components on	Intel [®] LXI	D385 Trai	nsceiver	Evaluation	Board ¹
Transmit Return Loss - 75 Ω Coaxial Cable					
51 to 102 kHz	15	17		dB	
102 kHz to 2.048 MHz	15	17		dB	
2.048 to 3.072 MHz	15	17		dB	
Transmit Return Loss - 120Ω Twisted-Pair Ca	ble				
51 to 102 kHz	15	20		dB	
102 kHz to 2.048 MHz	15	20		dB	
2.048 to 3.072 MHz	15	20		dB	
1. Guaranteed by design and other correlation r	nethods.	•			

Table 59 lists the AC characteristics for the LXT385 ransceiver receiver.

Table 59. Intel[®] LXT385 Transceiver AC Receiver Characteristics

Parameter	Min.	Тур.	Max.	Unit	Test Condition
Permissible cable attenuation			12	dB	Tested at 1024 kH
Signal-to-noise interference margin, per ITU G.703, O.151	-15			dB	6 dB cable attenuation
Data decision threshold - Relative to peak input voltage	43	50	57	%	
Data slicer minimum threshold		150		mV	
Differential receiver input impedance		70		kΩ	Tested at 1024 kH
Common-mode input impedance		20		kΩ	
Receiver intrinsic wide-band jitter, RCLK output		0.04	0.07	U.I.	
Loss of Signal (LOS) Parameters					
LOS threshold		200		mV	
LOS hysteresis		50		mV	
LOS delay time in data-recovery mode		30		μs	
LOS reset - 12.5% ones' density (4 marks in a sliding 32-bit period)	12.5			%	
LOS reset - Data-recovery mode	10		255	marks	
Consecutive zeroes before LOS - G.755 Recommendation		32		spaces	
Consecutive zeroes before LOS - ETSI 300 233 Specification		2048		spaces	
Low-Limit Input - Jitter Tolerance ¹ , per G.735	Recomm	endation	Note 1		
1 to 20 Hz	36			U.I.	
20 Hz to 2.4 kHz	1.5			U.I.	6 dB cable attenuation
18 to 100 kHz	0.2			U.I.	
Intel [®] LXD385 Transceiver Evaluation Board -	Receive	Return L	.oss ²		
51 to 102 kHz	20			dB	
102 to 2048 kHz	20			dB	-
2048 to 3072 kHz	20			dB	-
Receiver Path Delay		1	1		1
Bipolar mode		1		U.I.	Jitter attenuator
Unipolar mode		6		U.I.	disabled

2. Measured against nominal impedance using LXD385 transceiver evaluation board components.

11.0 Timing Characteristics

This chapter discusses the following timing characteristics:

- Section 11.1, "Intel® LXT385 Transceiver Timing"
- Section 11.2, "Host Processor Mode Parallel Interface Timing"
 - Section 11.2.1, "Intel® Processor Parallel Interface Timing"
 - Section 11.2.2, "Motorola* Processor Parallel Interface Timing"
- Section 11.3, "Host Processor Mode Serial Interface Timing"

intel

11.1 Intel[®] LXT385 Transceiver Timing

Table 60 lists transmit timing characteristics for the LXT385 ransceiver.

Table 60. Intel[®] LXT385 Transceiver Transmit Timing Characteristics

Parameter	Sym.	Min.	Тур.	Max.	Unit	Test Condition
Master Clock Timing			1	L	L	•
Master clock (MCLK) frequency			2.048		MHz	
Master clock tolerance		-50		+50	ppm	
Master clock duty cycle		40		60	%	
Output Transmit Timing						
Pulse width		219	244	269	ns	
Delay time: OE low to driver high impedance				1	μs	
Delay time: TCLK low to driver high impedance		50	60	75	μs	
TCLK, TPOS, TNEG Timing						·
TCLK frequency			2.048		MHz	
TCLK average tolerance when using JA in transmit path		-50		+50	ppm	
TCLK tolerance		-50		+50	ppm	
TCLK burst rate				20	MHz	Gapped transmit clock
TCLK duty cycle		10		90	%	NRZ mode
TPOS/TNEG pulse width (RZ mode)		236		252	ns	RZ mode (TCLK = High for >16 MCLK clock cycles)
TPOS/TNEG to TCLK setup time	t _{SUT}	20			ns	
TCLK to TPOS/TNEG hold time	t _{HT}	20			ns	

Figure 19 is a transmit timing diagram for the LXT385 ransceiver.

Figure 19. Intel[®] LXT385 Transceiver - Transmit Timing

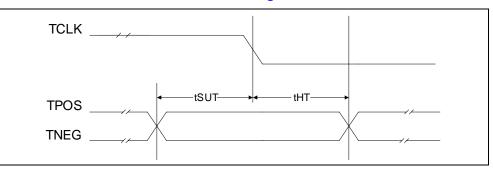
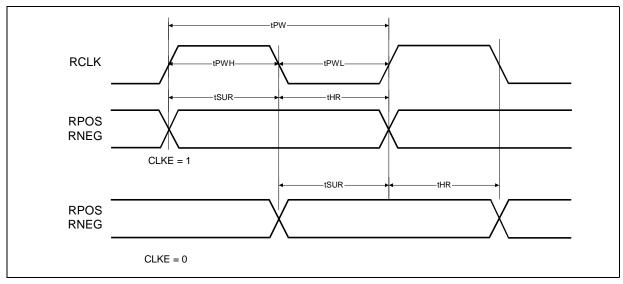


Table 61 lists receive timing characteristics for the LXT385 ransceiver.

Table 61. Intel[®] LXT385 Transceiver Receive Timing Characteristics

Parameter	Sym.	Min.	Тур.	Max.	Unit	Test Condition
Receive Clock Timing		•			1	
Receive clock-recovery capture range, relative to nominal frequency			±80		ppm	MCLK = ±100 ppm
Receive clock duty cycle ¹		40	50	60	%	
Receive clock pulse width ¹	t _{PW}	447	488	529	ns	
Receive clock pulse width low time	t _{PWL}	203	244	285	ns	
Receive clock pulse width high time	t _{PWH}	203	244	285	ns	
RCLK, RPOS, RNEG Timing						
RPOS/RNEG to RCLK rising setup time	t _{SUR}	200	244		ns	
RCLK rising to RPOS/RNEG hold time	t _{HR}	200	244		ns	
RPOS/RNEG pulse width $(MCLK = high)^2$		200	244	300	ns	
Rise/fall time ³		20			ns	C _{Load} = 15 pF
Delay time between RPOS/RNEG and RCLK				5	ns	MCLK = high ⁴
 RCLK duty cycle widths vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst-case jitter conditions (0.2 UI displacement, per ITU G.823). Cleak are purported in this model. 						


2. Clock recovery is disabled in this mode.

3. For all digital outputs.

4. If MCLK = high, the receive PLLs are replaced by a simple EXOR circuit.

Figure 20 is a receive timing diagram for the LXT385 ransceiver.

Figure 20. Intel[®] LXT385 Transceiver - Receive Timing

11.2 Host Processor Mode - Parallel Interface Timing

This sections gives timing characteristics and timing diagrams for both ${\rm Intel}^{\circledast}$ processors and Motorola processors.

11.2.1 Intel[®] Processor - Parallel Interface Timing

Table 62 lists read timing characteristics for the Intel[®] processor.

Table 62. Intel[®] Processor - Read Timing Characteristics

Parameter	Sym.	Min. ¹	Max. ¹	Unit	Test Conditions		
Address setup time to latch	t _{SALR}	10	-	ns			
Valid address latch pulse width	t _{VL}	30	-	ns			
Latch active to active read setup time	t _{SLR}	10	-	ns			
Chip select setup time to active read	t _{SCSR}	0	-	ns			
Chip select hold time from inactive read	t _{HSCR}	0	-	ns			
Address hold time from inactive ALE	t _{HALR}	5		ns	$C_{Load} = 100$		
Active read to data valid delay time	t _{PRD}	10	50	ns	pF on D7:0.		
Address setup time to RD inactive	t _{HAR}	1	-	ns	All other		
Address hold time from RD inactive	t _{SAR}	5	-	ns	outputs are		
Inactive read to data high-impedance tristate delay time	t _{ZRD}	3	35	ns	loaded with 50 pF.		
Valid read signal pulse width	t _{VRD}	60	-	ns			
Inactive read to inactive INT delay time	t _{INT}	-	10	ns			
Active chip select to RDY delay time	t _{DRDY}	0	12	ns			
Active ready low time	t _{VRDY}	-	40	ns			
Inactive ready to high-impedance tristate delay time	t _{RDYZ}	-	3	ns	1		
 Minimum and maximum values are at 25 C° and are for design aid only, not guaranteed, and not subject to production testing. 							

Figure 21 is a timing diagram for the Intel[®] processor in the Host Processor mode, with a nonmultiplexed interface, and a read cycle takes place.

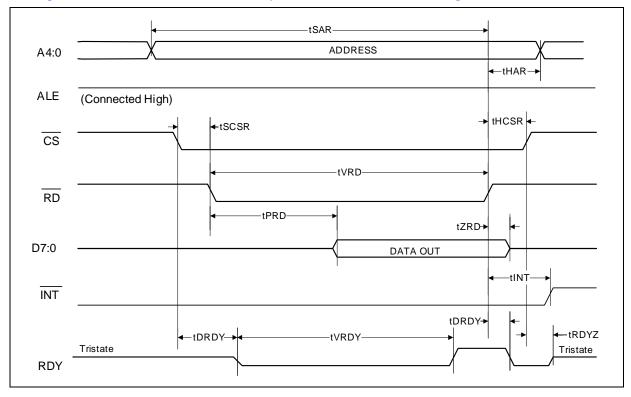


Figure 21. Intel[®] Processor Non-Multiplexed Interface - Read Timing

Figure 22 is a timing diagram for the Intel[®] processor in the Host Processor mode, with a multiplexed interface, and a read cycle takes place.

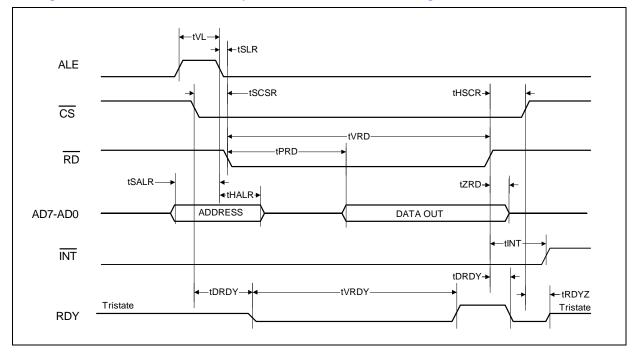


Table 63 lists write timing characteristics for the Intel[®] processor.

Table 63. Intel[®] Processor - Write Timing Characteristics

Parameter	Sym.	Min. ¹	Max. ¹	Unit	Test Conditions	
Address setup time to latch	t _{SALW}	10	-	ns		
Valid address latch pulse width	t _{VL}	30	-	ns		
Latch active to active write setup time	t _{SLW}	10	-	ns		
Chip select setup time to active write	t _{SCSW}	0	-	ns		
Chip select hold time from inactive write	t _{HCSW}	0	-	ns		
Address hold time from inactive ALE	t _{HALW}	5		ns	C _{Load} = 100	
Data valid to write active setup time	t _{SDW}	40	-	ns	pF on D7:0.	
Data hold time to active write	t _{HDW}	30	-	ns	All other	
Address setup time to WR inactive	t _{HAW}	2	-	ns	outputs are	
Address hold time from WR inactive	t _{SAW}	6	-	ns	loaded with 50 pF.	
Valid write signal pulse width	t _{VWR}	60	-	ns		
Inactive write to inactive INT delay time	t _{INT}	-	10	ns		
Chip select to RDY delay time ²	t _{DRDY}	0	12	ns		
Low time for active RDY	t _{VRDY}	-	40	ns		
Delay time between inactive RDY to high- impedance tristate ²	t _{RDYZ}	-	3	ns		
Minimum and maximum values are at 25 C° and are for design aid only, not guaranteed, and not subject to production testing. Timing parameters do not apply for Reset Register 0Ab. For details, see Section 7.4.1, "Host Processor						

2. Timing parameters do not apply for Reset Register 0Ah. For details, see Section 7.4.1, "Host Processor Mode - Parallel Interface".

Figure 23 is a timing diagram for the Intel[®] processor in the Host Processor mode, with a nonmultiplexed interface, and a write cycle takes place.

Figure 24 is a timing diagram for the Intel[®] processor in the Host Processor mode, with a multiplexed interface, and a write cycle takes place.

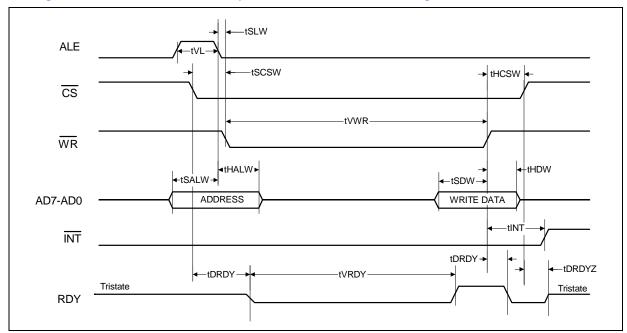


Figure 24. Intel[®] Processor Multiplexed Interface - Write Timing

11.2.2 Motorola* Processor - Parallel Interface Timing

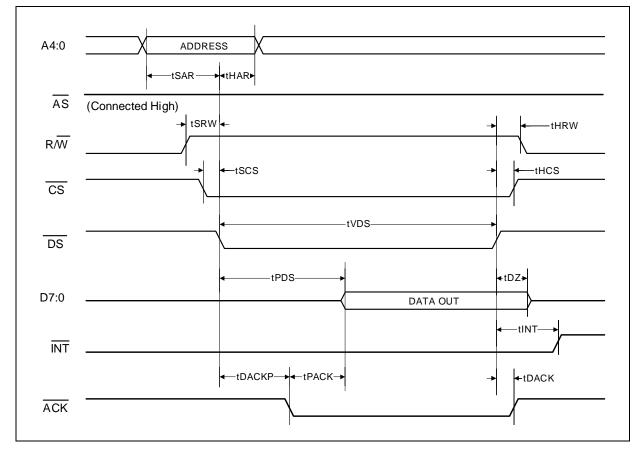

Table 64 lists read timing characteristics for the Motorola processor.

Table 64. Motorola Processor - Read Timing Characteristics

Parameter	Sym.	Min. ¹	Max. ¹	Unit	Test Conditions
Address setup time to address or data strobe	t _{SAR}	10	-	ns	
Address hold time from address or data strobe	t _{HAR}	5	-	ns	
Valid address strobe pulse width	t _{VAS}	95	-	ns	
R/\overline{W} setup time to active data strobe	t _{SRW}	10	-	ns	
R/W hold time from inactive data strobe	t _{HRW}	0	-	ns	
Chip select setup time to active data strobe	t _{SCS}	0	-	ns	C = 100 pE
Chip select hold time from inactive data strobe	t _{HCS}	0	-	ns	C _L = 100pF on D7:0.
Address strobe active to data strobe active delay	t _{ASDS}	20	-	ns	
Delay time from active data strobe to valid data	t _{PDS}	3	30	ns	All other outputs are
Delay time from inactive data strobe to data high impedance	t _{DZ}	3	30	ns	loaded with 50 pF.
Valid data strobe pulse width	t _{VDS}	60	-	ns	50 рг.
Inactive data strobe to inactive INT delay time	t _{INT}	-	10	ns	
Data strobe inactive to address strobe inactive delay	t _{DSAS}	15	-	ns	
DS asserted to ACK asserted delay	t _{DACKP}	-	40	ns	
DS deasserted to ACK deasserted delay	t _{DACK}	-	10	ns	
Active ACK to valid data delay	t _{PACK}	-	0	ns	
 Minimum and maximum values are at 25 C° and are for de production testing. 	esign aid c	only, not	guarante	ed, and	I not subject to

Figure 25 is a timing diagram for the Motorola processor in the Host Processor mode, with a nonmultiplexed interface, and a read cycle takes place.

Figure 25. Motorola Processor Non-Multiplexed Interface - Read Timing

Figure 26 is a timing diagram for the Motorola processor in the Host Processor mode with a multiplexed interface, and a read cycle takes place.

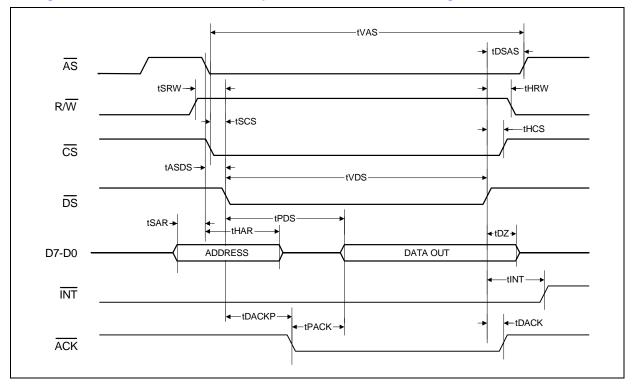


Figure 26. Motorola Processor Multiplexed Interface - Read Timing

Table 65 lists write timing characteristics for the Motorola processor.

Table 65. Motorola Processor - Write Timing Characteristics

Parameter	Sym.	Min. ¹	Max. ¹	Unit	Test Conditions		
Address setup time to address strobe	t _{SAS}	10	-	ns			
Address hold time to address strobe	t _{HAS}	5	-	ns			
Valid address strobe pulse width	t _{VAS}	95	-	ns			
R/\overline{W} setup time to active data strobe	t _{SRW}	10	-	ns			
R/\overline{W} hold time from inactive data strobe	t _{HRW}	0	-	ns			
Chip select setup time to active data strobe	t _{SCS}	0	-	ns	C _L = 100 pF		
Chip select hold time from inactive data strobe	t _{HCS}	0	-	ns	on D7:0. All other		
Address strobe active to data strobe active delay	t _{ASDS}	20	-	ns	outputs are		
Data setup time to DS deassertion	t _{SDW}	40	-	ns	loaded with 50 pF.		
Data hold time from DS deassertion	t _{HDW}	30	-	ns			
Valid data strobe pulse width	t _{VDS}	60	-	ns			
Inactive data strobe to inactive INT delay time	t _{INT}	-	10	ns			
Data strobe inactive to address strobe inactive delay	t _{DSAS}	15	-	ns			
Active data strobe to ACK output enable time	t _{DACK}	0	12	ns	1		
DS asserted to ACK asserted delay	t _{DACKP}	-	40	ns	1		
 Minimum and maximum figures are at 25 C° and are for design aid only, not guaranteed, and not subject to production testing. 							

Figure 27 is a timing diagram for the Motorola processor in the Host Processor mode, with a nonmultiplexed interface, and a write cycle takes place.

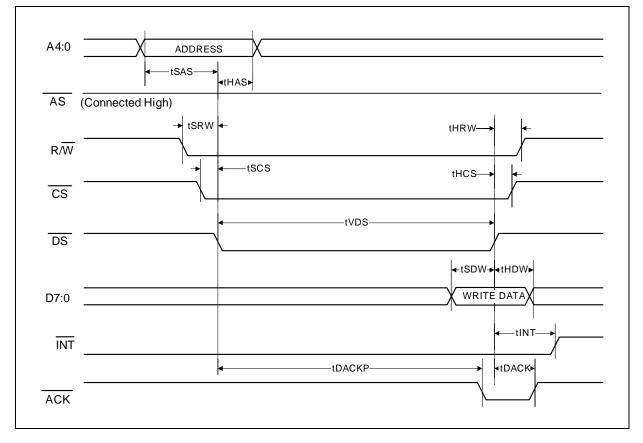


Figure 28 is a timing diagram for the Motorola processor in the Host Processor mode, with a multiplexed interface, and a write cycle takes place.

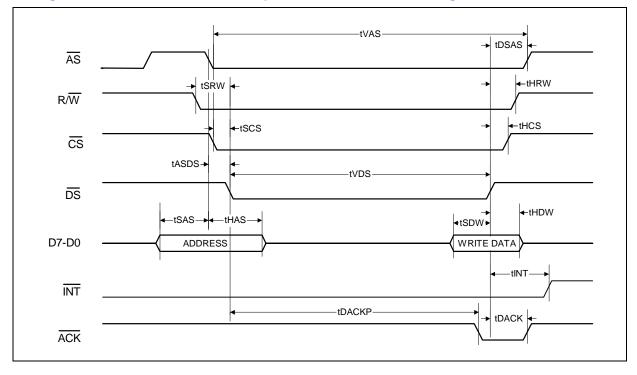


Figure 28. Motorola Processor Multiplexed Interface - Write Timing

intel®

11.3 Host Processor Mode - Serial Interface Timing

Table 66 lists serial I/O timing for a Motorola or Intel[®] processor in the Host Processor mode with a serial interface.

Table 66. Serial I/O Timing Characteristics

Parameter	Sym.	Min.	Typ. ¹	Max.	Unit	Test Condition	
Rise/fall time any pin	Trf			100	ns		
SDI to SCLK setup time	Tdc	5			ns		
SCLK to SDI hold time	Tcdh	5			ns		
SCLK low time	Tcl	25			ns		
SCLK high time	Tch	25			ns		
SCLK rise and fall time	Tr, Tf			50	ns	$C_{Load} = 1.6$	
CS falling edge to SCLK rising edge	Тсс	10			ns	mA, 50 pF	
Last SCLK edge to CS rising edge	Tcch	10			ns		
CS inactive time	Tcwh	50			ns		
SCLK to SDO valid delay time	Tcdv			5	ns		
SCLK falling edge or $\overline{\text{CS}}$ rising edge to SDO high impedance	Tcdz		10		ns		
Typical figures are at 25 C° and are for design aid only, not guaranteed, and not subject to production testing.							

Figure 29 is a timing diagram for serial input to the Host Processor interface.

Figure 29. Serial Input Timing

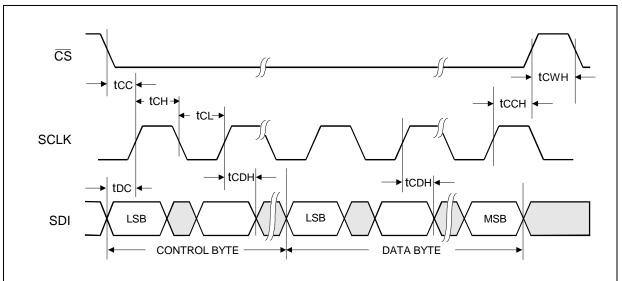
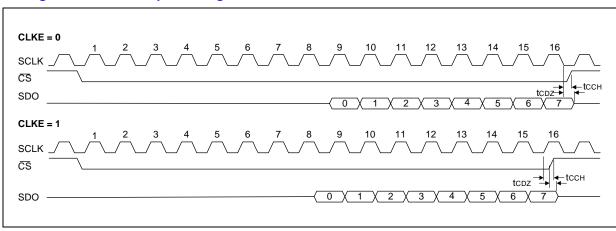



Figure 30 is a timing diagram for serial output from the Host Processor interface.

Figure 30. Serial Output Timing

intel®

12.0 Line-Interface-Unit Circuit Specifications

Table 67 lists specifications for the LIU circuits with which the LXT385 ransceiver is designed to operate. (For a diagram of an LIU circuit to be used with the LXT385 ransceiver, seeFigure 6 in Section 6.5, "Line-Interface Protection").

Table 67. Line-Interface-Unit Circuit Specifications

Parameter	Minimum	Typical	Maximum	Units					
Termination Resistor Tolerance									
RRING/RTIP termination resistor R _R - Receiver Resi	stor								
75Ω Coaxial Cable	9.3Ω ±1%			Ω					
120Ω Twisted Pair Cable	15.0Ω ±1%			Ω					
TRING/TTIP termination resistor R _T - Transmitter Re	sistor								
75Ω Coaxial Cable		$8.7\Omega \pm 1\%$	$9.1\Omega \pm 1\%$	Ω					
120Ω Twisted Pair Cable		10.5Ω ±1%	11.0Ω ±1%	Ω					

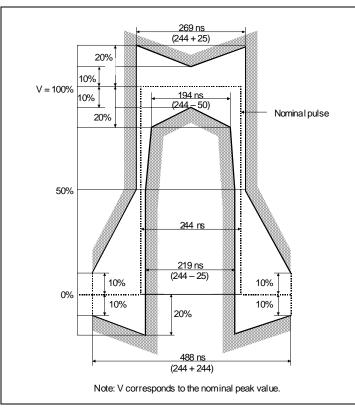
Table 68 lists specifications for transformers with which the LXT385 ransceiver is designed to operate in an LIU circuit.

Table 68. Intel[®] LXT385 Transceiver Transformer Specifications

	Turns Ratio						
Parameter	120Ω Receive - 1:2 ¹	75Ω Receive - 1:1.6	Low Power 120Ω / 75Ω Transmit - 1:1.7 ¹	Standard Power 120Ω / 75Ω Transmit - 1:2 ¹	Units		
Primary Inductance - Minimum	1.2	1.2	1.2	1.2	mH		
Leakage Inductance - Maximum	0.60	0.60	0.60	0.60	μH		
Interwinding Capacitance - Maximum	60	60	60	60	pF		
DC Resistance - Maximum - Primary	1.00	1.00	0.70	0.70	Ω		
DC Resistance - Maximum - Secondary	1.30	1.20	1.05	1.20	Ω		
Dielectric Breakdown Voltage - Minimum ²	1500	1500	1500	1500	Vrms		
1. Transformer turns ratio accuracy is $\pm 2\%$. 2. The dielectric breakdown voltage parameter is application dependent.							

13.0 Mask Specifications

This chapter discusses the specifications for the mask into which the LXT385 ransceiver transmitter output pulses must fit. The mask specification has two parts.


- Part 1 (Table 69) lists specifications on how the pulse relates to load resistance.
- Part 2 (Figure 31) shows the border limits (the mask template) into which the pulse must fit.

Note: For information on pulse shaping, see Section 6.4.2, "Transmitter Pulse Shaping".

Table 69. ITU G.703 2.048 Mbit/s Pulse Mask Specifications

Parameter	Twisted- Pair Cable	Coaxial Cable	Unit
Test load impedance	120	75	Ω
Nominal peak voltage for a mark	3.00	2.37	V
Nominal peak voltage for a space	0 ± 0.300	0 ± 0.237	V
Nominal pulse width	244	244	ns
Ratio (in terms of percentage) of the positive mark amplitude to the negative mark amplitude, with both marks referenced to a space	95 to 105	95 to 105	Ratio in %

Figure 31. ITU G.703 Mask Template

intel®

14.0 Jitter Performance

This chapter includes tables and figures on jitter performance. For more information on jitter, see:

- Section 6.6, "Jitter Attenuation"
- Table 40 in Chapter 8.0, "Registers"

Table 70 lists jitter attenuator characteristics for the LXT385 ransceiver.

Table 70. Intel[®] LXT385 Transceiver Jitter Attenuator Characteristics

Parameter	Min.	Тур.	Max.	Unit	Test Condition			
Output jitter in remote loopback ¹ . (See Figure 34.)		0.06	0.11	UI	ETSI CTR12/13 output jitter			
Hardware mode, jitter attenuator corner frequency (JACF) 3dB. ¹		3.5		Hz	Sinusoidal jitter modulation			
Jitter Attenuator Corner Frequency 3 dB, Host Proce	ssor Mod	le ¹						
FIFO is 32 bits		2.5		Hz	Sinusoidal jitter			
FIFO is 64 bits		3.5		Hz	modulation			
Data-Latency Delay for FIFO								
FIFO is 32 bits.		16		UI	See Note 2			
FIFO is 64 bits.		32		UI	See Note 2.			
Input Jitter Tolerance before FIFO Overflow or Under	flow (See	Figure	32.)					
FIFO is 32 bits.		24		UI				
FIFO is 64 bits.		56		UI				
Jitter Attenuation Limitation, per ITU-T G.736. (See Fi	gure 33.)		•					
At 3 Hz	-0.5			dB				
At 40 Hz	-0.5			dB				
At 400 Hz	+19.5			dB				
At 100 KHz	+19.5			dB				
 Guaranteed by design and other correlation methods. Delay is through jitter attenuator only. For total through 		y, add the	e receive	e and tr	ansmit path delays.			

Figure 32 shows the typical LXT385 ransceiver jitter tolerance in comparison to the ITU G.823 standard.

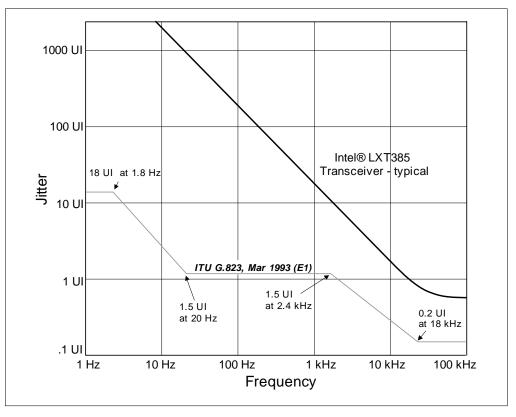


Figure 33 shows the typical jitter transfer performance for the LXT385 ransceiver in comparison to the ITU G.736 template.

Figure 33. Intel[®] LXT385 Transceiver Jitter Transfer Performance

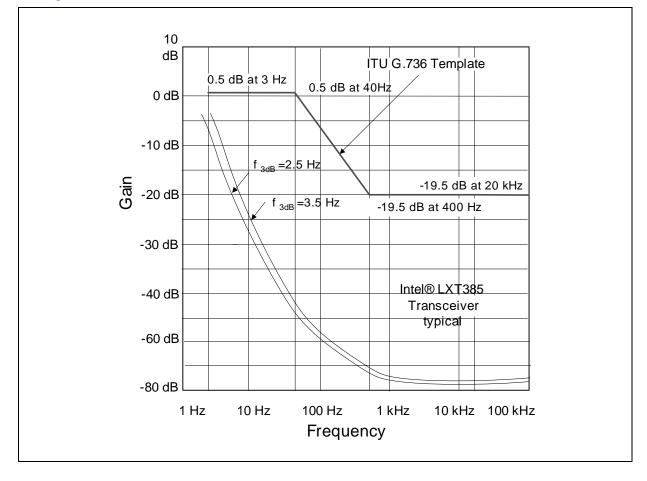
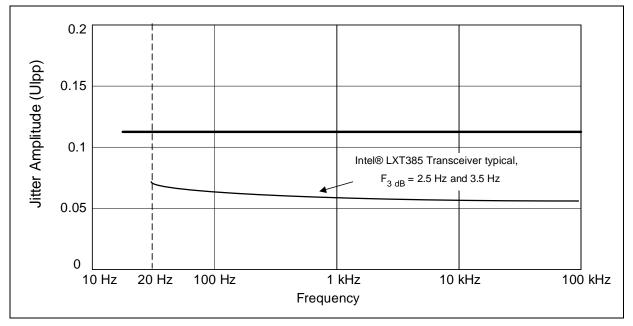
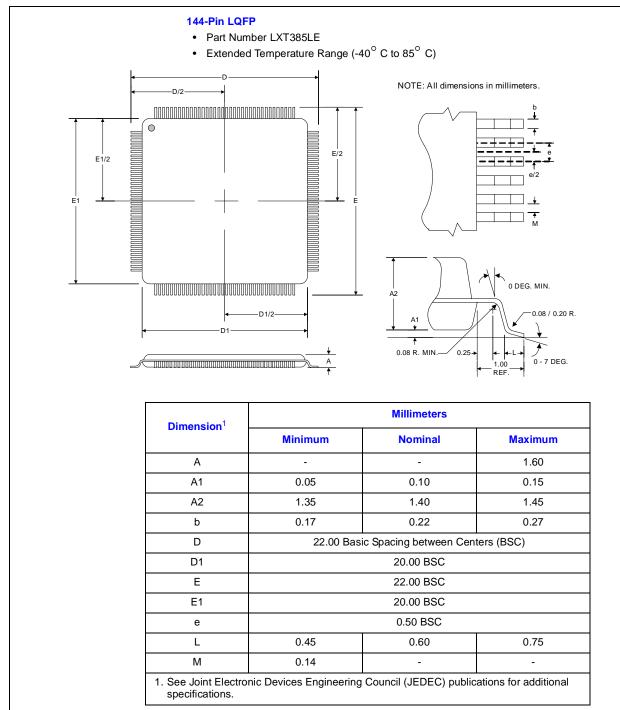



Figure 34 shows the typical jitter performance of the LXT385 ransceiver when it is used in ETSI CTR12/13 applications that place the LXT385 ransceiver in a system with other devices.

As Figure 34 shows, the LXT385 ransceiver output jitter is below the specified jitter requirement (indicated in the figure by the dark line).

intel


15.0 **Recommendations and Specifications**

- AT&T* Technical Reference 62411 "Private Line Services Description and Interface Specification", December 1990.
- European Telecommunications Standards Institute (ETSI) publications:
 - ETSI CTR12/13 -
 - TCTR 012 Reference DTR/NA-004001. Network Aspects (NA). ONP study on possible new interfaces at the network side of the NT1
 - TCTR 013 Reference: DTR/NA-001001. Network Aspects (NA). Network support of cordless terminal mobility
 - ETSI ETS 300 166 Transmission and Multiplexing Physical and electrical characteristics of hierarchical digital interfaces for equipment using the 2048 kbit/s
 - ETSI ETS 300 233 Integrated Services Digital Network (ISDN). Access digital section for ISDN primary rate
- IEEE 1149.1, Standard Test Access Port and Boundary-Scan Architecture
- International Telecommunication Union (ITU) publications:
 - G.703 Physical/electrical characteristics of hierarchical digital interfaces
 - G.704 Functional characteristics of interfaces associated with network nodes
 - G.722 Testing signal-to-total distortion ratio for 7 kHz audio codecs at 64 kbit/s
 - G.735 Characteristics of Primary PCM multiplex equipment operating at 2048 kbit/s and offering digital access at 384 kbit/s and/or synchronous digital access at 64 kbit/s
 - G.736 Characteristics of a synchronous digital multiplex equipment operating at 2048 kbit/s
 - G.742 Second order digital multiplex equipment operating at 8448 kbits/s and using positive justification.
 - G.755 Digital multiplex equipment operating at 139 264 kbit/s and multiplexing three tributaries at 44 736 kbits/s
 - G.772 Protected monitoring points provided on digital transmission systems
 - G.775 Loss Of Signal (LOS), Alarm Indication Signal (AIS) and Remote Defect Indication (RDI) and clearance criteria for PDH signals
 - G.783 Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks
 - G.823 The control of jitter and wander within digital networks which are based on 2048 kbit/s hierarchy
 - O.151 Error performance measuring equipment operating at the primary rate and above (This publication specifies instruments to measure error performance in digital systems.)

- Office of Telecommunications (United Kingdom) publication: OFTEL OTR-001 Short Circuit Current Requirements
- Telcordia* publications. (Telcordia was formerly known as Bellcore.)
 - GR-253-CORE SONET Transport Systems Common Generic Criteria
 - GR-499-CORE Transport Systems Generic Requirements
 - TR-TSY-000009 Asynchronous Digital Multiplexes Requirements and Objectives

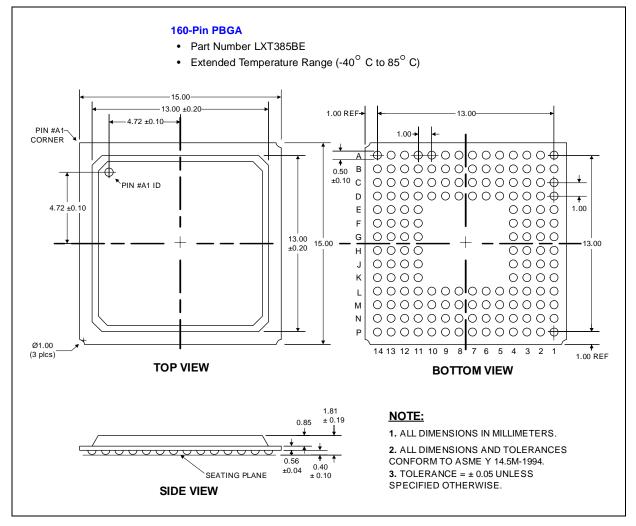

16.0 Mechanical Specifications

Figure 35. Dimensions for 144-Pin Low Octal Flat Package (LQFP)

Figure 36. Dimensions for 160-Ball Plastic Ball Grid Array (BGA)

intel®

16.1 Top Label Markings

Figure 37 shows a sample LQFP non-RoHS package for the LXT385 Transceiver.

Notes:

- 1. In contrast to the Pb-Free (RoHS-compliant) LQFP package, the non-RoHS-compliant package does not have the "e3" symbol in the last line of the package label.
- Further information regarding RoHS and lead-free components can be obtained from your local Intel representative.
 For general information, see http://www.intel.com/technology/silicon/leadfree.htm.

Figure 37. Sample LQFP Non-RoHS Package - Intel[®] DJLXT385LE Transceiver

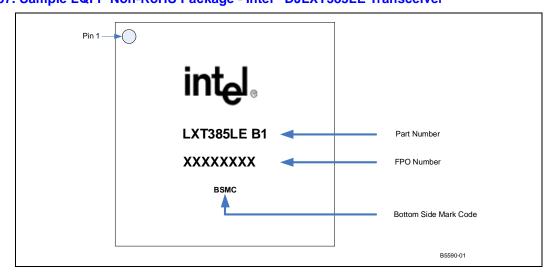
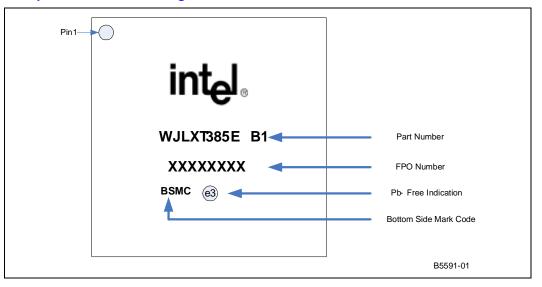



Figure 38 shows a sample Pb-Free (RoHS-compliant) LQFP package for the LXT385 Transceiver.

Figure 38. Sample LQFP RoHS Package - Intel[®] WJLXT385LE Transceiver

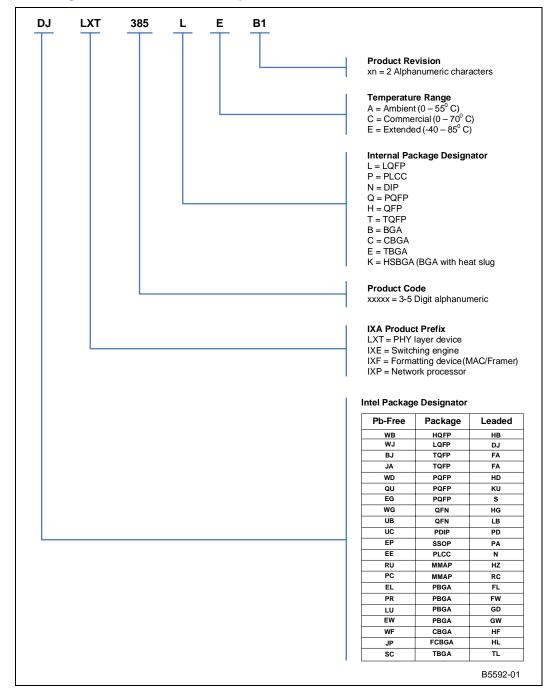

17.0 Product Ordering Information

Table 71 lists product ordering information for the LXT385 Transceiver. Figure 39 illustrates the ordering information matrix.

Table 71. Product Ordering Information

Product Number	Revision	Package Type	Pin Count	RoHS Compliant	Figure
DJLXT385LE.B1	B1	LQFP	144	No	Figure 37, "Sample LQFP Non-RoHS Package - Intel® DJLXT385LE Transceiver"
WJLXT385LE.B1	B1	LQFP	144	Yes	Figure 38, "Sample LQFP RoHS Package - Intel® WJLXT385LE Transceiver"

18.0 Package Information

Figure 39. Ordering Information Matrix – Sample

19.0 Abbreviations and Acronyms

Table 72 lists abbreviations and acronyms and their meanings.

Table 72. Abbreviations, Acronyms, and Meanings

Abbreviation or Acronym	Meaning of Abbreviation or Acronym
AIS	Alarm Indication Signal
AMI	Alternate Mark Inversion
BPV	BiPolar Violation
ESD	Electro-Static Discharge
FCS	Frame Check Sequence
FIFO	First In, First Out
HDB3	High Density Bipolar Three
I/O	In/Out
ITU	International Telecommunication Union
JA	Jitter Attenuator
JA	Jitter Attenuator
JEDEC	Joint Electronic Devices Engineering Council
JTAG	Joint Test Action Group
LIU	Line Interface Unit
LOS	Loss Of Signal
LQFP	Low Octal Flat Package
Max.	Maximum
Mbps	Megabits per second
Min.	Minimum
NEG	Negative
NRZ	Non-Return to Zero
PBGA	Plastic Ball Grid Array
PLL	Phase-Locked Loop
POS	Positive
REBE	Remote End Block Error
RZ	Return to Zero
Sym.	Symbol
TAOS	Transmit All Ones
Тур.	Typical
UI	Unit Interval
Ulpp	Unit Interval peak-to-peak