ProASIC ${ }^{\text {PLUS® }}$ Flash Family FPGAs

${ }^{\circ}$

Features and Benefits

High Capacity

Commercial and Industrial

- 75,000 to 1 Million System Gates
- 27 k to 198 kbits of Two-Port SRAM
- 66 to 712 User I/Os

Military

- 300, 000 to 1 million System Gates
- 72 k to 198 kbits of Two Port SRAM
- 158 to 712 User I/Os

Reprogrammable Flash Technology

- $0.22 \mu \mathrm{~m} 4 \mathrm{LM}$ Flash-Based CMOS Process
- Live At Power-Up (LAPU) Level 0 Support
- Single-Chip Solution
- No Configuration Device Required
- Retains Programmed Design during Power-Down/Up Cycles
- Mil/Aero Devices Operate over Full Military Temperature Range

Performance

- $3.3 \mathrm{~V}, 32$-Bit PCI, up to 50 MHz (33 MHz over military temperature)
- Two Integrated PLLs
- External System Performance up to 150 MHz

Secure Programming

- The Industry's Most Effective Security Key (FlashLock ${ }^{\circledR}$)

Low Power

- Low Impedance Flash Switches
- Segmented Hierarchical Routing Structure
- Small, Efficient, Configurable (Combinatorial or Sequential) Logic Cells

High Performance Routing Hierarchy

- Ultra-Fast Local and Long-Line Network
- High-Speed Very Long-Line Network
- High-Performance, Low Skew, Splittable Global Network
- 100% Routability and Utilization

I/O

- Schmitt-Trigger Option on Every Input
- $2.5 \mathrm{~V} / 3.3 \mathrm{~V}$ Support with Individually-Selectable Voltage and Slew Rate
- Bidirectional Global I/Os
- Compliance with PCI Specification Revision 2.2
- Boundary-Scan Test IEEE Std. 1149.1 (JTAG) Compliant
- Pin Compatible Packages across the ProASIC ${ }^{\text {PLUS }}$ Family

Unique Clock Conditioning Circuitry

- PLL with Flexible Phase, Multiply/Divide and Delay Capabilities
- Internal and/or External Dynamic PLL Configuration
- Two LVPECL Differential Pairs for Clock or Data Inputs

Standard FPGA and ASIC Design Flow

- Flexibility with Choice of Industry-Standard Front-End Tools
- Efficient Design through Front-End Timing and Gate Optimization

ISP Support

- In-System Programming (ISP) via JTAG Port

SRAMs and FIFOs

- SmartGen Netlist Generation Ensures Optimal Usage of Embedded Memory Blocks
- 24 SRAM and FIFO Configurations with Synchronous and Asynchronous Operation up to 150 MHz (typical)

Table 1 - ProASIC ${ }^{\text {PLUS }}$ Product Profile

Device	APA075	APA150	APA300 ${ }^{1}$	APA450	APA600 ${ }^{1}$	APA750	APA1000 ${ }^{1}$
Maximum System Gates	75,000	150,000	300,000	450,000	600,000	750,000	1,000,000
Tiles (Registers)	3,072	6,144	8,192	12,288	21,504	32,768	56,320
Embedded RAM Bits (k=1,024 bits)	27 k	36k	72 k	108 k	126 k	144 k	198 k
Embedded RAM Blocks (256x9)	12	16	32	48	56	64	88
LVPECL	2	2	2	2	2	2	2
PLL	2	2	2	2	2	2	2
Global Networks	4	4	4	4	4	4	4
Maximum Clocks	24	32	32	48	56	64	88
Maximum User l/Os	158	242	290	344	454	562	712
JTAG ISP	Yes						
PCl	Yes						
Package (by pin count)							
TQFP	100, 144	100	-	-	-	-	-
PQFP	208	208	208	208	208	208	208
PBGA	-	456	456	456	456	456	456
FBGA	144	144, 256	144, 256	144, 256, 484	256, 484, 676	676, 896	896, 1152
CQFP ${ }^{2}$			208, 352		208, 352		208, 352
CCGA/LGA ${ }^{2}$					624		624

Notes:

1. Available as Commercial/Industrial and Military/MIL-STD-883B devices.
2. These packages are available only for Military/MIL-STD-883B devices.
\qquad

Ordering Information

\qquad

Device Resources

User I/Os ${ }^{\mathbf{2}}$													
Commercial/Industrial											Military/MIL-STD-883B		
Device	$\begin{array}{\|c\|} \hline \text { TQFP } \\ 100-P i n \end{array}$	$\begin{gathered} \text { TQFP } \\ \text { 144-Pin } \end{gathered}$	$\left\|\begin{array}{c} \text { PQFP } \\ 208-P i n \end{array}\right\|$	$\begin{gathered} \text { PBGA } \\ 456-P i n \end{gathered}$	$\begin{gathered} \text { FBGA } \\ \text { 144-Pin } \end{gathered}$	$\begin{array}{\|c\|} \text { FBGA } \\ 256-P i n \end{array}$	$\begin{gathered} \text { FBGA } \\ \text { 484-Pin } \end{gathered}$	FBGA 676-Pin	$\begin{gathered} \text { FBGA } \\ 896-P i n \end{gathered}$	$\begin{array}{c\|} \text { FBGA } \\ \text { 1152-Pin } \end{array}$	$\begin{array}{\|c\|} \text { CQFP } \\ 208-P i n \end{array}$	$\left\|\begin{array}{c} \text { CQFP } \\ 352-P i n \end{array}\right\|$	$\begin{aligned} & \text { CCGA/ } \\ & \text { LGA } \\ & \text { 624-Pin } \end{aligned}$
APA075	66	107	158		100								
APA150	66		158	242	100	$186{ }^{3}$							
APA300			$158{ }^{4}$	$290{ }^{4}$	$100{ }^{4}$	$186^{3,4}$					158	248	
APA450			158	344	100	$186{ }^{3}$	$344{ }^{3}$						
APA600			$158{ }^{4}$	$356{ }^{4}$		$186^{3,4}$	$370{ }^{3}$	454			158	248	440
APA750			158	356				454	$562{ }^{5}$				
APA1000			$158{ }^{4}$	$356{ }^{4}$					$642^{4,5}$	712^{5}	158	248	440

Notes:

1. Package Definitions: TQFP = Thin Quad Flat Pack, PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch Ball Grid Array, CQFP = Ceramic Quad Flat Pack, CCGA = Ceramic Column Grid Array, LGA = Land Grid Array
2. Each pair of PECL I/Os is counted as one user I/O.
3. FG256 and FG484 are footprint-compatible packages.
4. Military Temperature Plastic Package Offering
5. FG896 and FG1152 are footprint-compatible packages.

General Guideline

Maximum performance numbers in this datasheet are based on characterized data. Actel does not guarantee performance beyond the limits specified within the datasheet.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Temperature Grade Offerings

Package	APA075	APA150	APA300	APA450	APA600	APA750	APA1000
TQ100	C, I	C, I					
TQ144	C, I						
PQ208	C, I	C, I	C, I, M	C, I	C, I, M	C, I	C, I, M
BG456		C, I	C, I, M	C, I	C, I, M	C, I	C, I, M
FG144	C, I	C, I	C, I, M	C, I			
FG256		C, I	C, I, M	C, I	C, I, M		
FG484				C, I	C, I, M		
FG676					C, I, M	C, I	
FG896						C, I	C, I, M
FG1152							C, I
CQ208			M, B		M, B		M, B
CQ352			M, B		M, B		M, B
CG624					M, B		M, B

Note: C=Commercial
I = Industrial
$M=$ Military
$B=$ MIL-STD-883

Speed Grade and Temperature Matrix

	$\mathbf{- F}$	Std.
C	\checkmark	\checkmark
I		\checkmark
M, B		\checkmark

Note: C=Commercial
I = Industrial
$M=$ Military
$B=$ MIL $-S T D-883$

Table of Contents

General Description
ProASICPLUS Architecture 1-2
Timing Control and Characteristics 1-13
Sample Implementations 1-16
Adjustable Clock Delay 1-16
Clock Skew Minimization 1-16
PLL Electrical Specifications 1-21
Design Environment 1-28
ISP 1-28
Related Documents 1-29
Package Thermal Characteristics 1-30
Calculating Typical Power Dissipation 1-31
Operating Conditions 1-34
Tristate Buffer Delays 1-45
Output Buffer Delays 1-48
Input Buffer Delays 1-50
Global Input Buffer Delays 1-52
Predicted Global Routing Delay 1-54
Global Routing Skew 1-54
Module Delays 1-55
Sample Macrocell Library Listing 1-55
Embedded Memory Specifications 1-58
Pin Description 1-77
Recommended Design Practice for VPN/VPP 1-78
Package Pin Assignments
100-Pin TQFP 2-1
144-Pin TQFP 2-3
208-Pin PQFP 2-5
208-Pin CQFP 2-12
352-Pin CQFP 2-16
456-Pin PBGA 2-22
144-Pin FBGA 2-37
256-Pin FBGA 2-40
484-Pin FBGA 2-45
676-Pin FBGA 2-51
896-Pin FBGA 2-59
1152-Pin FBGA 2-69
624-Pin CCGA/LGA 2-78
Datasheet Information
List of Changes 3-1
Data Sheet Categories 3-8
Export Administration Regulations (EAR) 3-8
Actel Safety Critical, Life Support, and High-Reliability Applications Policy 3-8

General Description

The ProASICPLUS family of devices, Actel's secondgeneration Flash FPGAs, offers enhanced performance over Actel's ProASIC family. It combines the advantages of ASICs with the benefits of programmable devices through nonvolatile Flash technology. This enables engineers to create high-density systems using existing ASIC or FPGA design flows and tools. In addition, the ProASICPLUS family offers a unique clock conditioning circuit based on two on-board phase-locked loops (PLLs). The family offers up to one million system gates, supported with up to 198 kbits of two-port SRAM and up to 712 user I/Os, all providing 50 MHz PCl performance.
Advantages to the designer extend beyond performance. Unlike SRAM-based FPGAs, four levels of routing hierarchy simplify routing, while the use of Flash technology allows all functionality to be live at powerup. No external boot PROM is required to support device programming. While on-board security mechanisms prevent access to the program information, reprogramming can be performed in-system to support future design iterations and field upgrades. The device's architecture mitigates the complexity of ASIC migration at higher user volume. This makes ProASICPLUS a costeffective solution for applications in the networking, communications, computing, and avionics markets.
The ProASIC른 family achieves its nonvolatility and reprogrammability through an advanced Flash-based $0.22 \mu \mathrm{~m}$ LVCMOS process with four layers of metal. Standard CMOS design techniques are used to implement logic and control functions, including the PLLs and LVPECL inputs. This results in predictable performance compatible with gate arrays.
The ProASICPLUS architecture provides granularity comparable to gate arrays. The device core consists of a Sea-of-Tiles ${ }^{\top M}$. Each tile can be configured as a flip-flop, latch, or three-input/one-output logic function by programming the appropriate Flash switches. The
combination of fine granularity, flexible routing resources, and abundant Flash switches allow 100\% utilization and over 95\% routability for highly congested designs. Tiles and larger functions are interconnected through a four-level routing hierarchy.
Embedded two-port SRAM blocks with built-in FIFO/RAM control logic can have user-defined depths and widths. Users can also select programming for synchronous or asynchronous operation, as well as parity generations or checking.
The unique clock conditioning circuitry in each device includes two clock conditioning blocks. Each block provides a PLL core, delay lines, phase shifts (0° and 180°), and clock multipliers/dividers, as well as the circuitry needed to provide bidirectional access to the PLL. The PLL block contains four programmable frequency dividers which allow the incoming clock signal to be divided by a wide range of factors from 1 to 64 . The clock conditioning circuit also delays or advances the incoming reference clock up to 8 ns (in increments of 0.25 ns). The PLL can be configured internally or externally during operation without redesigning or reprogramming the part. In addition to the PLL, there are two LVPECL differential input pairs to accommodate high-speed clock and data inputs.
To support customer needs for more comprehensive, lower-cost, board-level testing, Actel's ProASICPLUS devices are fully compatible with IEEE Standard 1149.1 for test access port and boundary-scan test architecture. For more information concerning the Flash FPGA implementation, please refer to the "Boundary Scan (JTAG)" section on page 1-11.
ProASIC ${ }^{\text {PLUS }}$ devices are available in a variety of highperformance plastic packages. Those packages and the performance features discussed above are described in more detail in the following sections.

Actel

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

ProASIC ${ }^{\text {PLUS }}$ Architecture

The proprietary ProASICPLUS architecture provides granularity comparable to gate arrays.
The ProASICPLUS device core consists of a Sea-of-Tiles (Figure 1-1). Each tile can be configured as a three-input logic function (e.g., NAND gate, D-Flip-Flop, etc.) by programming the appropriate Flash switch interconnections (Figure 1-2 and Figure 1-3 on page 1-3). Tiles and larger functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Flash switches are programmed to connect signal lines to
the appropriate logic cell inputs and outputs. Dedicated high-performance lines are connected as needed for fast, low-skew global signal distribution throughout the core. Maximum core utilization is possible for virtually any design.
ProASICPLUS devices also contain embedded, two-port SRAM blocks with built-in FIFO/RAM control logic. Programming options include synchronous or asynchronous operation, two-port RAM configurations, user defined depth and width, and parity generation or checking. Please see the "Embedded Memory Configurations" section on page 1-23 for more information.

Figure 1-1 • The ProASIC ${ }^{\text {PLUS }}$ Device Architecture

Figure 1-2 • Flash Switch

Figure 1-3 • Core Logic Tile

Live at Power-Up

The Actel Flash-based ProASIcPLUS devices support Level 0 of the live at power-up (LAPU) classification standard. This feature helps in system component initialization, executing critical tasks before the processor wakes up, setting up and configuring memory blocks, clock generation, and bus activity management. The LAPU feature of Flash-based ProASICPLUS devices greatly simplifies total system design and reduces total system cost, often eliminating the need for Complex Programmable Logic Device (CPLD) and clock generation PLLs that are used for this purpose in a system. In addition, glitches and brownouts in system power will not corrupt the ProASICPLUS device's Flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASICPLUS devices simplify total system design, and reduce cost and design risk, while increasing system reliability and improving system initialization time.

Flash Switch

Unlike SRAM FPGAs, ProASICPLUS uses a live-on-power-up ISP Flash switch as its programming element.
In the ProASICPLUS Flash switch, two transistors share the floating gate, which stores the programming information. One is the sensing transistor, which is only used for writing and verification of the floating gate voltage. The other is the switching transistor. It can be used in the architecture to connect/separate routing nets or to configure logic. It is also used to erase the floating gate (Figure 1-2 on page 1-2).

Logic Tile

The logic tile cell (Figure 1-3) has three inputs (any or all of which can be inverted) and one output (which can connect to both ultra-fast local and efficient long-line routing resources). Any three-input, one-output logic function (except a three-input XOR) can be configured as one tile. The tile can be configured as a latch with clear or set or as a flip-flop with clear or set. Thus, the tiles can flexibly map logic and sequential gates of a design.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Routing Resources

The routing structure of ProASICPLUS devices is designed to provide high performance through a flexible fourlevel hierarchy of routing resources: ultra-fast local resources, efficient long-line resources, high-speed, very long-line resources, and high performance global networks.
The ultra-fast local resources are dedicated lines that allow the output of each tile to connect directly to every input of the eight surrounding tiles (Figure 1-4).
The efficient long-line resources provide routing for longer distances and higher fanout connections. These resources vary in length (spanning 1, 2, or 4 tiles), run both vertically and horizontally, and cover the entire ProASIC ${ }^{\text {PLUS }}$ device (Figure 1-5 on page 1-5). Each tile can drive signals onto the efficient long-line resources, which
can in turn access every input of every tile. Active buffers are inserted automatically by routing software to limit the loading effects due to distance and fanout.
The high-speed, very long-line resources, which span the entire device with minimal delay, are used to route very long or very high fanout nets. (Figure 1-6 on page 1-6).
The high-performance global networks are low-skew, high fanout nets that are accessible from external pins or from internal logic (Figure 1-7 on page 1-7). These nets are typically used to distribute clocks, resets, and other high fanout nets requiring a minimum skew. The global networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically with signals accessing every input on all tiles.

Figure 1-4 • Ultra-Fast Local Resources

Figure 1-5 • Efficient Long-Line Resources

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

High Speed Very Long-Line Resouces

Figure 1-6 • High-Speed, Very Long-Line Resources

Clock Resources

The ProASICPLUS family offers powerful and flexible control of circuit timing through the use of analog circuitry. Each chip has two clock conditioning blocks containing a phase-locked loop (PLL) core, delay lines, phase shifter $\left(0^{\circ}\right.$ and $\left.180^{\circ}\right)$, clock multiplier/dividers, and all the circuitry needed for the selection and interconnection of inputs to the global network (thus providing bidirectional access to the PLL). This permits the PLL block to drive inputs and/or outputs via the two global lines on each side of the chip (four total lines). This circuitry is discussed in more detail in the "ProASICPLUS Clock Management System" section on page 1-13.

Clock Trees

One of the main architectural benefits of ProASICPLUS is the set of power- and delay-friendly global networks. ProASICPLUS offers four global trees. Each of these trees is based on a network of spines and ribs that reach all the tiles in their regions (Figure 1-7 on page 1-7). This flexible clock tree architecture allows users to map up to 88 different internal/external clocks in an APA1000 device. Details on the clock spines and various numbers of the family are given in Table 1-1 on page 1-7.
The flexible use of the ProASICPLUS clock spine allows the designer to cope with several design requirements. Users implementing clock-resource intensive applications can easily route external or gated internal clocks using global routing spines. Users can also drastically reduce delay penalties and save buffering resources by mapping critical high fanout nets to spines. For design hints on using these features, refer to Actel's Efficient Use of ProASIC Clock Trees application note.
\qquad

Note: This figure shows routing for only one global path.
Figure 1-7 • High-Performance Global Network
Table 1-1 • Clock Spines

	APA075	APA150	APA300	APA450	APA600	APA750	APA1000
Global Clock Networks (Trees)	4	4	4	4	4	4	4
Clock Spines/Tree	6	8	8	12	14	16	22
Total Spines	24	32	32	48	56	64	88
Top or Bottom Spine Height (Tiles)	16	24	32	32	48	64	80
Tiles in Each Top or Bottom Spine	512	768	1,024	1,024	1,536	2,048	2,560
Total Tiles	3,072	6,144	8,192	12,288	21,504	32,768	56,320

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Array Coordinates

During many place-and-route operations in Actel's Designer software tool, it is possible to set constraints that require array coordinates.
Table 1-2 is provided as a reference. The array coordinates are measured from the lower left $(0,0)$. They can be used in region constraints for specific groups of core cells, I/Os, and RAM blocks. Wild cards are also allowed.
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed because there is not a one-to-one correspondence between l/O
cells and core cells. In addition, the I/O coordinate system changes depending on the die/package combination.
Core cell coordinates start at the lower left corner (represented as $(1,1)$) or at $(1,5)$ if memory blocks are present at the bottom. Memory coordinates use the same system and are indicated in Table 1-2. The memory coordinates for an APA1000 are illustrated in Figure 1-8. For more information on how to use constraints, see the Designer User's Guide or online help for ProASIC ${ }^{\text {PLUS }}$ software tools.

Table 1-2 • Array Coordinates

Device	Logic Tile				Memory Rows		All	
	Min.		Max.		Bottom	Top		
	x	y	\mathbf{x}	y	y	y	Min.	Max.
APA075	1	1	96	32	-	$(33,33)$ or $(33,35)$	0,0	97, 37
APA150	1	1	128	48	-	$(49,49)$ or $(49,51)$	0,0	129, 53
APA300	1	5	128	68	$(1,1)$ or (1,3)	$(69,69)$ or $(69,71)$	0,0	129, 73
APA450	1	5	192	68	$(1,1)$ or $(1,3)$	$(69,69)$ or $(69,71)$	0,0	193, 73
APA600	1	5	224	100	$(1,1)$ or $(1,3)$	$(101,101)$ or $(101,103)$	0,0	225,105
APA750	1	5	256	132	$(1,1)$ or $(1,3)$	$(133,133)$ or $(133,135)$	0,0	257,137
APA1000	1	5	352	164	$(1,1)$ or (1,3)	$(165,165)$ or $(165,167)$	0,0	353, 169

Figure 1-8 • Core Cell Coordinates for the APA1000

Input/Output Blocks

To meet complex system demands, the ProASIC ${ }^{\text {PLUS }}$ family offers devices with a large number of user I/O pins, up to 712 on the APA1000. Table 1-3 shows the available supply voltage configurations (the PLL block uses an independent 2.5 V supply on the AVDD and AGND pins). All I/Os include ESD protection circuits. Each I/O has been tested to 2000 V to the human body model (per JESD22 (HBM)).
Six or seven standard I/O pads are grouped with a GND pad and either a V_{DD} (core power) or $\mathrm{V}_{\mathrm{DDP}}$ (I/O power) pad. Two reference bias signals circle the chip. One protects the cascaded output drivers, while the other creates a virtual $V_{\text {DD }}$ supply for the I/O ring.
I/O pads are fully configurable to provide the maximum flexibility and speed. Each pad can be configured as an input, an output, a tristate driver, or a bidirectional buffer (Figure 1-9 and Table 1-4).

Table 1-3 • ProASIC ${ }^{\text {PLUS }}$ I/O Power Supply Voltages

	$\mathbf{V}_{\text {DDP }}$	
	$\mathbf{2 . 5} \mathbf{V}$	$\mathbf{3 . 3} \mathbf{V}$
Input Compatibility	2.5 V	3.3 V
Output Drive	2.5 V	3.3 V

$3.3 \mathrm{~V} / 2.5 \mathrm{~V}$
Signal Control

> | 3.3 V/2.5 V Signal Control Drive |
| :--- |
| Strength and Slew-Rate Control |

Figure 1-9 • I/O Block Schematic Representation

Table 1-4 • I/O Features

Function	Description
I/O pads configured as inputs	- Selectable 2.5 V or 3.3 V threshold levels - Optional pull-up resistor - Optionally configurable as Schmitt trigger input. The Schmitt trigger input option can be configured as an input only, not a bidirectional buffer. This input type may be slower than a standard input under certain conditions and has a typical hysteresis of 0.35 V . I/O macros with an "S" in the standard I/O library have added Schmitt capabilities. - 3.3 V PCI Compliant (except Schmitt trigger inputs)
I/O pads configured as outputs	- Selectable 2.5 V or 3.3 V compliant output signals - 2.5 V - JEDEC JESD $8-5$ - 3.3 V - JEDEC JESD $8-\mathrm{A}$ (LVTTL and LVCMOS) - 3.3 V PCI compliant - Ability to drive LVTTL and LVCMOS levels - Selectable drive strengths - Selectable slew rates - Tristate
I/O pads configured as bidirectional buffers	- Selectable 2.5 V or 3.3 V compliant output signals - 2.5 V - JEDEC JESD $8-5$ - 3.3 V - JEDEC JESD 8-A (LVTTL and LVCMOS) - 3.3 V PCI compliant - Optional pull-up resistor - Selectable drive strengths - Selectable slew rates - Tristate

Power-Up Sequencing

While ProASIC ${ }^{\text {PLUS }}$ devices are live at power-up, the order of V_{DD} and $\mathrm{V}_{\text {DDP }}$ power-up is important during system start-up. $V_{D D}$ should be powered up simultaneously with $V_{\text {DDP }}$ on ProASIC PLUS devices. Failure to follow these guidelines may result in undesirable pin behavior during system start-up. For more information, refer to Actel's Power-Up Behavior of ProASICPLUS Devices application note.

LVPECL Input Pads

In addition to standard I/O pads and power pads, ProASICPLUS devices have a single LVPECL input pad on both the east and west sides of the device, along with AVDD and AGND pins to power the PLL block. The LVPECL pad cell consists of an input buffer (containing a
low voltage differential amplifier) and a signal and its complement, PPECL (I/P) (PECLN) and NPECL (PECLREF). The LVPECL input pad cell differs from the standard I/O cell in that it is operated from V_{DD} only.
Since it is exclusively an input, it requires no output signal, output enable signal, or output configuration bits. As a special high-speed differential input, it also does not require pull ups. Recommended termination for LVPECL inputs is shown in Figure 1-10. The LVPECL pad cell compares voltages on the PPECL (I/P) pad (as illustrated in Figure 1-11) and the NPECL pad and sends the results to the global MUX (Figure 1-14 on page 1-14). This high-speed, low-skew output essentially controls the clock conditioning circuit.
LVPECLs are designed to meet LVPECL JEDEC receiver standard levels (Table 1-5).

Figure 1-10 • Recommended Termination for LVPECL Inputs

Figure 1-11 • LVPECL High and Low Threshold Values
Table 1-5 - LVPECL Receiver Specifications

Symbol	Parameter	Min.	Max	Units
V_{IH}	Input High Voltage	1.49	2.72	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	0.86	2.125	V
$\mathrm{~V}_{\mathrm{ID}}$	Differential Input Voltage	0.3	$\mathrm{~V}_{\mathrm{DD}}$	V

Boundary Scan (JTAG)

ProASICPLUS devices are compatible with IEEE Standard 1149.1, which defines a set of hardware architecture and mechanisms for cost-effective, board-level testing. The basic ProASIC ${ }^{\text {PLUS }}$ boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers, and instruction register (Figure 1-12). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD and BYPASS) and the optional IDCODE instruction (Table 1-6).
Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI and TDO (test data input and output), TMS (test mode selector) and TRST (test reset input). TMS, TDI and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied to them. These
pins are dedicated for boundary-scan test usage. Actel recommends that a nominal $20 \mathrm{k} \Omega$ pull-up resistor is added to TDO and TCK pins.
The TAP controller is a four-bit state machine (16 states) that operates as shown in Figure 1-13 on page 1-12. The ' 1 's and '0's represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.
ProASICPLUS devices have to be programmed at least once for complete boundary-scan functionality to be available. Prior to being programmed, EXTEST is not available. If boundary-scan functionality is required prior to programming, refer to online technical support on the Actel website and search for ProASIC ${ }^{\text {PLUS }}$ BSDL.

Figure 1-12 • ProASIC ${ }^{\text {PLUS } \text { JTAG Boundary Scan Test Logic Circuit }}$

Table 1-6 - Boundary-Scan Opcodes

	Hex Opcode
EXTEST	00
SAMPLE/PRELOAD	01
IDCODE	OF

Table 1-6 - Boundary-Scan Opcodes

	Hex Opcode
CLAMP	05
BYPASS	FF

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles. The TRST pin may also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.
ProASICPLUS devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register
with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin.
Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundaryscan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

Figure 1-13 • TAP Controller State Diagram

Timing Control and Characteristics

ProASICPLUS Clock Management System

ProASIC ${ }^{\text {PLUS }}$ devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASICPLUS family contains two phase-locked loop (PLL) blocks which perform the following functions:

- Clock Phase Adjustment via Programmable Delay (250 ps steps from -7 ns to +8 ns)
- Clock Skew Minimization
- Clock Frequency Synthesis

Each PLL has the following key features:

- Input Frequency Range (f_{IN}) = 1.5 to 180 MHz
- Feedback Frequency Range ($\mathrm{f}_{\mathrm{VcO}}$) $=24$ to 180 MHz
- Output Frequency Range ($\mathrm{f}_{\mathrm{OUT}}$) $=8$ to 180 MHz
- Output Phase Shift $=0^{\circ}$ and 180°
- Output Duty Cycle = 50\%
- Low Output Jitter (max at $25^{\circ} \mathrm{C}$)
- $f_{\text {VCO }}<10 \mathrm{MHz}$. Jitter $\pm 1 \%$ or better
- $10 \mathrm{MHz}<\mathrm{f}_{\mathrm{VcO}}<60 \mathrm{MHz}$. Jitter $\pm 2 \%$ or better
- $f_{\text {VCO }}>60 \mathrm{MHz}$. Jitter $\pm 1 \%$ or better

Note: Jitter(ps) = Jitter(\%)* period
For Example:
Jitter in picoseconds at $100 \mathrm{MHz}=0.01$ * $(1 / 100 \mathrm{E} 6)=100 \mathrm{ps}$

- Maximum Acquisition $=80 \mu \mathrm{~s}$ for $\mathrm{f}_{\mathrm{Vco}}>40 \mathrm{MHz}$ Time

$$
=30 \mu \mathrm{~s} \text { for } \mathrm{f}_{\mathrm{VCO}}<40 \mathrm{MHz}
$$

- Low Power Consumption - 6.9 mW (max - analog supply) $+7.0 \mu \mathrm{~W} / \mathrm{MHz}$ (max - digital supply)

Physical Implementation

Each side of the chip contains a clock conditioning circuit based on a 180 MHz PLL block (Figure 1-14 on page 114). Two global multiplexed lines extend along each side of the chip to provide bidirectional access to the PLL on that side (neither MUX can be connected to the opposite side's PLL). Each global line has optional LVPECL input pads (described below). The global lines may be driven by either the LVPECL global input pad or the outputs from the PLL block, or both. Each global line can be driven by a different output from the PLL. Unused global pins can be configured as regular I/Os or left unconnected. They default to an input with pull-up. The two signals available to drive the global networks are as
follows (Figure 1-15 on page 1-15, Table 1-7 on page 115, and Table 1-8 on page 1-16):

Global A (secondary clock)

- Output from Global MUX A
- Conditioned version of PLL output (foUT $)$ - delayed or advanced
- Divided version of either of the above
- Further delayed version of either of the above ($0.25 \mathrm{~ns}, 0.50 \mathrm{~ns}$, or 4.00 ns delay) ${ }^{1}$

Global B

- Output from Global MUX B
- Delayed or advanced version of $f_{\text {OUT }}$
- Divided version of either of the above
- Further delayed version of either of the above ($0.25 \mathrm{~ns}, 0.50 \mathrm{~ns}$, or 4.00 ns delay) ${ }^{2}$

Functional Description

Each PLL block contains four programmable dividers as shown in Figure 1-14 on page 1-14. These allow frequency scaling of the input clock signal as follows:

- The n divider divides the input clock by integer factors from 1 to 32 .
- The m divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64.
- The two dividers together can implement any combination of multiplication and division resulting in a clock frequency between 24 and 180 MHz exiting the PLL core. This clock has a fixed 50\% duty cycle.
- The output frequency of the PLL core is given by the formula EQ 1-1 ($f_{\text {REF }}$ is the reference clock frequency):

$$
\mathrm{f}_{\mathrm{OUT}}=\mathrm{f}_{\text {REF }} * \mathrm{~m} / \mathrm{n}
$$

EQ 1-1

- The third and fourth dividers (u and v) permit the signals applied to the global network to each be further divided by integer factors ranging from 1 to 4.
The implementations shown in EQ2 and EQ3 enable the user to define a wide range of frequency multiplier and divisors.

$$
\begin{align*}
& f_{G L B}=m /(n * u) \\
& f_{G L A}=m /(n * v)
\end{align*}
$$

1. This mode is available through the delay feature of the Global MUX driver.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

enable the user to define a wide range of frequency multipliers and divisors. The clock conditioning circuit can advance or delay the clock up to 8 ns (in increments of 0.25 ns) relative to the positive edge of the incoming reference clock. The system also allows for the selection of output frequency clock phases of 0° and 180°.
Prior to the application of signals to the rib drivers, they pass through programmable delay units, one per global network. These units permit the delaying of global
signals relative to other signals to assist in the control of input set-up times. Not all possible combinations of input and output modes can be used. The degrees of freedom available in the bidirectional global pad system and in the clock conditioning circuit have been restricted. This avoids unnecessary and unwieldy design kit and software work.

Notes:

1. $F B D L Y$ is a programmable delay line from 0 to 4 ns in 250 ps increments.
2. DLYA and DLYB are programmable delay lines, each with selectable values 0 ps, $250 \mathrm{ps}, 500 \mathrm{ps}$, and 4 ns .
3. OBDIV will also divide the phase-shift since it takes place after the PLL Core.

Figure 1-14 • PLL Block - Top-Level View and Detailed PLL Block Diagram

Note: When a signal from an I/O tile is connected to the core, it cannot be connected to the Global MUX at the same time. Figure 1-15 • Input Connectors to ProASIC ${ }^{\text {PLUS }}$ Clock Conditioning Circuitry
Table 1-7 • Clock-Conditioning Circuitry MUX Settings

MUX	Datapath	Comments
FBSEL		
1	Internal Feedback	
2	Internal Feedback and Advance Clock Using FBDLY	-0.25 to -4 ns in 0.25 ns increments
3	External Feedback (EXTFB)	
XDLYSEL	Feedback Unchanged	
0	Deskew feedback by advancing clock by system delay	Fixed delay of -2.95 ns
1		
OBMUX	Primary bypass, no divider	
0	Delay Clock Using FBDLY	
1	Phase Shift Clock by 0°	+0.25 to +4 ns in 0.25 ns increments
2	Reserved	
4	Phase Shift Clock by +180	
5	Reserved	
6		
7	Secondary bypass, no divider	
$\mathbf{O A M U X}$	Secondary bypass, use divider	
0	Delay Clock Using FBDLY	+0.25 to +4 ns in 0.25 ns increments
1	Phase Shift Clock by 0°	
2		
3		

Table 1-8 - Clock-Conditioning Circuitry Delay-Line Settings

Delay Line	Delay Value (ns)
DLYB	
0	0
1	+0.25
2	+0.50
3	+4.0
DLYA	
0	0
1	+0.25
2	+0.50
3	+4.0

Lock Signal

An active-high Lock signal (added via the SmartGen PLL development tool) indicates that the PLL has locked to the incoming clock signal. The PLL will acquire and maintain lock even when there is jitter on the incoming clock signal. The PLL will maintain lock with an input jitter up to 5% of the input period, with a maximum of 5 ns. Users can employ the Lock signal as a soft reset of the logic driven by GLB and/or GLA. Note if $F_{I N}$ is not within specified frequencies, then both the Fout and lock signal are indeterminate.

PLL Configuration Options

The PLL can be configured during design (via Flashconfiguration bits set in the programming bitstream) or dynamically during device operation, thus eliminating the need to reprogram the device. The dynamic configuration bits are loaded into a serial-in/parallel-out shift register provided in the clock conditioning circuit. The shift register can be accessed either from user logic within the device or via the JTAG port. Another option is internal dynamic configuration via user-designed hardware. Refer to Actel's ProASICPLUS PLL Dynamic Reconfiguration Using JTAG application note for more information.
For information on the clock conditioning circuit, refer to Actel's Using ProASICPLUS Clock Conditioning Circuits application note.

Sample Implementations

Frequency Synthesis

Figure 1-16 on page 1-17 illustrates an example where the PLL is used to multiply a 33 MHz external clock up to 133 MHz . Figure 1-17 on page 1-17 uses two dividers to synthesize a 50 MHz output clock from a 40 MHz input reference clock. The input frequency of 40 MHz is multiplied by five and divided by four, giving an output clock (GLB) frequency of 50 MHz . When dividers are used, a given ratio can be generated in multiple ways, allowing the user to stay within the operating frequency ranges of the PLL. For example, in this case the input divider could have been two and the output divider also two, giving us a division of the input frequency by four to go with the feedback loop division (effective multiplication) by five.

Adjustable Clock Delay

Figure 1-18 on page 1-18 illustrates the delay of the input clock by employing one of the adjustable delay lines. This is easily done in ProASICPLUS by bypassing the PLL core entirely and using the output delay line. Notice also that the output clock can be effectively advanced relative to the input clock by using the delay line in the feedback path. This is shown in Figure 1-19 on page 1-18.

Clock Skew Minimization

Figure 1-20 on page 1-19 indicates how feedback from the clock network can be used to create minimal skew between the distributed clock network and the input clock. The input clock is fed to the reference clock input of the PLL. The output clock (GLA) feeds a clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two clocks. Refer to Actel's Using ProASICPLUS Clock Conditioning Circuits application note for more information.

Figure 1-16 • Using the PLL $33 \mathbf{~ M H z ~ I n , ~} 133 \mathbf{M H z}$ Out

Figure 1-17 • Using the PLL 40 MHz In, 50 MHz Out

Figure 1-18 • Using the PLL to Delay the Input Clock

Figure 1-19 • Using the PLL to Advance the Input Clock

Figure 1-20 • Using the PLL for Clock Deskewing

Logic Tile Timing Characteristics

Timing characteristics for ProASICPLUS devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ProASICPLUS family members. Internal routing delays are device dependent. Design dependency means that actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or by performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing-critical paths. Critical nets are determined by net property assignment prior to place-and-route. Refer to the Actel Designer User's Guide or online help for details on using constraints.

Timing Derating

Since ProASICPLUS devices are manufactured with a CMOS process, device performance will vary with temperature, voltage, and process. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and optimal process variations. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case process variations (within process specifications). The derating factors shown in Table 1-9 should be applied to all timing data contained within this datasheet.

All timing numbers listed in this datasheet represent sample timing characteristics of ProASICPLUS devices. Actual timing delay values are design-specific and can be derived from the Timer tool in Actel's Designer software after place-and-route.

Table 1-9 • Temperature and Voltage Derating Factors

$$
\text { (Normalized to Worst-Case Commercial, } \mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V} \text {) }
$$

	$\mathbf{- 5 5}^{\circ} \mathbf{C}$	$\mathbf{- 4 0}^{\circ} \mathbf{C}$	$\mathbf{0}^{\circ} \mathbf{C}$	$\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{7 0}^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 1 0}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}^{\circ} \mathbf{C}$	$\mathbf{1 3 5}^{\circ} \mathbf{C}$	$\mathbf{1 5 0}^{\mathbf{}} \mathbf{C}$
2.3 V	0.84	0.86	0.91	0.94	1.00	1.02	1.05	1.13	1.18	1.27
2.5 V	0.81	0.82	0.87	0.90	0.95	0.98	1.01	1.09	1.13	1.21
2.7 V	0.77	0.79	0.83	0.86	0.91	0.93	0.96	1.04	1.08	1.16

Notes:

1. The user can set the junction temperature in Designer software to be any integer value in the range of $-55^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$.
2. The user can set the core voltage in Designer software to be any value between 1.4 V and 1.6 V .

PLL Electrical Specifications

Parameter	Value $\mathbf{T}_{\mathbf{J}} \leq \mathbf{- 4 0}{ }^{\circ} \mathrm{C}$	Value $\mathrm{T}_{\mathbf{J}} \mathbf{>} \mathbf{- 4 0}{ }^{\circ} \mathrm{C}$	Notes
Frequency Ranges			
Reference Frequency f_{IN} (min.)	2.0 MHz	1.5 MHz	Clock conditioning circuitry (min.) lowest input frequency
Reference Frequency f_{IN} (max.)	$180 \mathrm{MHz}$	180 MHz	Clock conditioning circuitry (max.) highest input frequency
OSC Frequency $\mathrm{fVCO}^{\text {(min.) }}$	60	24 MHz	Lowest output frequency voltage controlled oscillator
OSC Frequency flvco (max.)	180	180 MHz	Highest output frequency voltage controlled oscillator
Clock Conditioning Circuitry fout $($ min.)	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}} \leq 40=18 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}>40=16 \mathrm{MHz} \end{aligned}$	6 MHz	Lowest output frequency clock conditioning circuitry
Clock Conditioning Circuitry fout (max.)	180	180 MHz	Highest output frequency clock conditioning circuitry
Acquisition Time from Cold Start			
Acquisition Time (max.)	$80 \mu \mathrm{~s}$	$30 \mu \mathrm{~s}$	$\mathrm{f}_{\mathrm{VCO}} \leq 40 \mathrm{MHz}$
Acquisition Time (max.)	$80 \mu \mathrm{~s}$	$80 \mu \mathrm{~s}$	$\mathrm{f}_{\mathrm{VCO}}>40 \mathrm{MHz}$
Long Term Jitter Peak-to-Peak Max.*			
Temperature		Frequency MHz	
$25^{\circ} \mathrm{C}$ (or higher)		$\mathbf{f}_{\text {vco }}<$ $\mathbf{1 0 < f _ { V }}$ $\mathbf{f}_{\text {vco }}$ 10 $\mathrm{co}<60$ >60	Jitter(ps) $=$ Jitter(\%)*period For example: Jitter in picoseconds at 100 MHz $=0.01 *(1 / 100 \mathrm{E} 6)=100 \mathrm{ps}$
		$\pm 1 \% \quad \pm 2 \% \quad \pm 1 \%$	
$0^{\circ} \mathrm{C}$		$\pm 1.5 \% \pm 2.5 \% ~ \pm 1 \%$	
$-40^{\circ} \mathrm{C}$		$\pm 2.5 \% ~ \pm 3.5 \% ~ \pm 1 \%$	
$-55^{\circ} \mathrm{C}$		$\pm 2.5 \% \pm 3.5 \% \pm 1 \%$	
Power Consumption			
Analog Supply Power (max.*)		6.9 mW per PLL	
Digital Supply Current (max.)		$7 \mu \mathrm{~W} / \mathrm{MHz}$	
Duty Cycle		50\% $\pm 0.5 \%$	
Input Jitter Tolerance		$\begin{gathered} \text { 5\% input period (max. } \\ 5 \mathrm{~ns}) \end{gathered}$	Maximum jitter allowable on an input clock to acquire and maintain lock.

Note: *High clock frequencies (>60 MHz) under typical setup conditions

PLL I/O Constraints

PLL locking is guaranteed only when the following constraints are followed:
Table 1-10 • PLL I/O Constraints

	$\mathrm{T}_{\mathrm{J}} \leq-40^{\circ} \mathrm{C}$		Value $\mathrm{T}_{\mathbf{J}} \boldsymbol{>} \mathbf{- 4 0}{ }^{\circ} \mathrm{C}$
I/O Type	PLL locking is guaranteed only when using low drive strength and low slew rate I/O. PLL locking may be inconsistent when using high drive strength or high slew rate I/Os		No Constraints
SSO	APA300	Hermetic packages ≤ 8 SSO	With FIN ≤ 180MHz and outputs simultaneouslyswitching
		Plastic packages ≤ 16 SSO	
	APA600	Hermetic packages ≤ 16 SSO	
		Plastic packages $\leq 32 \mathrm{SSO}$	
	APA1000	Hermetic packages ≤ 16 SSO	
		Plastic packages $\leq 32 \mathrm{SSO}$	
	APA300	Hermetic packages ≤ 12 SSO	With $\mathrm{FIN} \leq 50 \mathrm{MHz}$ and half outputs switching on positive clock edge, half switching on the negative clock edge no less than 10nsec later
		Plastic packages ≤ 20 SSO	
	APA600	Hermetic packages ≤ 32 SSO	
		Plastic packages ≤ 64 SSO	
	APA1000	Hermetic packages ≤ 32 SSO	
		Plastic packages ≤ 64 SSO	

ProASIC PLUS devices have FlashLock protection bits that, FlashLockonce programmed, block the entire programmed contents from being read externally. Please refer to Table 1-11 for details on the number of bits in the key for each device. If locked, the user can only reprogram the device employing the user-defined security key. This protects the device from being read back and duplicated. Since programmed data is stored in nonvolatile memory cells (actually very small capacitors) rather than in the wiring, physical deconstruction cannot be used to compromise data. This type of security breach is further discouraged by the placement of the memory cells beneath the four metal layers (whose removal cannot be accomplished without disturbing the charge in the capacitor). This is the highest security provided in the industry. For more information, refer to Actel's Design Security in Nonvolatile Flash and Antifuse FPGAs white paper.

Table 1-11 • Flashlock Key Size by Device

Device	Key Size
APA075	79 bits
APA150	79 bits
APA300	79 bits
APA450	119 bits
APA600	167 bits
APA750	191 bits
APA1000	263 bits

Embedded Memory Floorplan

The embedded memory is located across the top and bottom of the device in 256×9 blocks (Figure 1-1 on page $1-2$). Depending on the device, up to 88 blocks are available to support a variety of memory configurations. Each block can be programmed as an independent memory array or combined (using dedicated memory routing resources) to form larger, more complex memory configurations. A single memory configuration could include blocks from both the top and bottom memory locations.
Table 1-12 • ProASIC PLUS Memory Configurations by Device

Device		Maximum Width	Maximum Depth			
	Bottom		\mathbf{D}	\mathbf{W}	\mathbf{D}	\mathbf{W}
	0	12	256	108	1,536	9
APA150	0	16	256	144	2,048	9
APA300	16	16	256	144	2,048	9
APA450	24	24	256	216	3,072	9
APA600	28	28	256	252	3,584	9

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Table 1-12 • ProASIC ${ }^{\text {PLUS }}$ Memory Configurations by Device

Device	Bottom	Maximum Width		Maximum Depth		
		\mathbf{D}	\mathbf{W}	\mathbf{D}	\mathbf{W}	
APA750	32	32	256	288	4,096	9
APA1000	44	44	256	396	5,632	9

Table 1-13 • Basic Memory Configurations

Type	Write Access	Read Access	Parity	Library Cell Name
RAM	Asynchronous	Asynchronous	Checked	RAM256x9AA
RAM	Asynchronous	Asynchronous	Generated	RAM256x9AAP
RAM	Asynchronous	Synchronous Transparent	Checked	RAM256x9AST
RAM	Asynchronous	Synchronous Transparent	Generated	RAM256x9ASTP
RAM	Asynchronous	Synchronous Pipelined	Checked	RAM256x9ASR
RAM	Asynchronous	Synchronous Pipelined	Generated	RAM256x9ASRP
RAM	Synchronous	Asynchronous	Checked	RAM256x9SA
RAM	Synchronous	Asynchronous	Generated	RAM256xSAP
RAM	Synchronous	Synchronous Transparent	Checked	RAM256x9SST
RAM	Synchronous	Synchronous Transparent	Generated	RAM256x9SSTP
RAM	Synchronous	Synchronous Pipelined	Checked	RAM256x9SSR
RAM	Synchronous	Synchronous Pipelined	Generated	RAM256x9SSRP
FIFO	Asynchronous	Asynchronous	Checked	FIFO256x9AA
FIFO	Asynchronous	Asynchronous	Generated	FIFO256x9AAP
FIFO	Asynchronous	Synchronous Transparent	Checked	FIFO256x9AST
FIFO	Asynchronous	Synchronous Transparent	Generated	FIFO256x9ASTP
FIFO	Asynchronous	Synchronous Pipelined	Checked	FIFO256x9ASR
FIFO	Asynchronous	Synchronous Pipelined	Generated	FIFO256x9ASRP
FIFO	Synchronous	Asynchronous	Checked	FIFO256x9SA
FIFO	Synchronous	Asynchronous	Generated	FIFO256x9SAP
FIFO	Synchronous	Synchronous Transparent	Checked	FIFO256x9SST
FIFO	Synchronous	Synchronous Transparent	Generated	FIFO256x9SSTP
FIFO	Synchronous	Synchronous Pipelined	Checked	FIFO256x9SSR
FIFO	Synchronous	Synchronous Pipelined	Generated	FIFO256x9SSRP

\qquad

Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when RAM blocks are cascaded and are automatically inserted by the software tools.

Figure 1-21 • Example SRAM Block Diagrams

Table 1-14 • Memory Block SRAM Interface Signals

SRAM Signal	Bits	In/Out	
WCLKS	1	In	Write clock used on synchronization on write side
RCLKS	1	In	Read clock used on synchronization on read side
RADDR<0:7>	8	In	Read address
RBLKB	1	In	Read block select (active Low)
RDB	1	In	Read pulse (active Low)
WADDR<0:7>	8	In	Write address
WBLKB	1	In	Write block select (active Low)
DI<0:8>	9	In	Input data bits <0:8>, <8> can be used for parity In
WRB	1	In	Write pulse (active Low)
DO<0:8>	9	Out	Output data bits <0:8>, <8> can be used for parity Out
RPE	1	Out	Read parity error (active High)
WPE	1	Out	Write parity error (active High)
PARODD	1	In	Selects Odd parity generation/detect when High, Even parity when Low

Note: Not all signals shown are used in all modes.

Note: Each RAM block contains a multiplexer (called DMUX) for each output signal, increasing design efficiency. These DMUX cells do not consume any core logic tiles and connect directly to high-speed routing resources between the RAM blocks. They are used when RAM blocks are cascaded and are automatically inserted by the software tools.
Figure 1-22 • Basic FIFO Block Diagrams
Table 1-15 • Memory Block FIFO Interface Signals

FIFO Signal	Bits	In/Out	
WCLKS	1	In	Write clock used for synchronization on write side
RCLKS	1	In	Read clock used for synchronization on read side
LEVEL <0:7>	8	In	Direct configuration implements static flag logic
RBLKB	1	In	Read block select (active Low)
RDB	1	In	Read pulse (active Low)
RESET	1	In	Reset for FIFO pointers (active Low)
WBLKB	1	In	Write block select (active Low)
DI<0:8>	9	In	Input data bits <0:8>, <8> will be generated parity if PARGEN is true
WRB	1	In	Write pulse (active Low)
FULL, EMPTY	2	Out	FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH	2	Out	EQTH is true when the FIFO holds the number of words specified by the LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8>	9	Out	Output data bits <0:8>. <8> will be parity output if PARGEN is true.
RPE	1	Out	Read parity error (active High)
WPE	1	Out	Write parity error (active High)
LGDEP <0:2>	3	In	Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD	1	In	Parity generation/detect - Even when Low, Odd when High

Figure 1-23 • APA1000 Memory Block Architecture

256 words x 18 bits, 1 read, 1 write

512 words x 18 bits, 1 read, 1 write

1,024 words x 9 bits, 1 read, 1 write
Total Memory Blocks Used $=10$ Total Memory Bits $=23,040$

Figure 1-24 • Example Showing Memory Arrays with Different Widths and Depths

Design Environment

The ProASICPLUS family of FPGAs is fully supported by both Actel's Libero ${ }^{\circledR}$ Integrated Design Environment (IDE) and Designer FPGA Development software. Actel Libero IDE is an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment (see Actel's website for more information about Libero IDE). Libero IDE includes Synplify ${ }^{\circledR}$ AE from Synplicity®, ViewDraw ${ }^{\circledR}$ AE from Mentor Graphics ${ }^{\circledR}$, ModelSim ${ }^{\circledR}$ HDL Simulator from Mentor Graphics, WaveFormer Lite ${ }^{\text {TM }}$ AE from SynaptiCAD ${ }^{\circledR}$, PALACETM AE Physical Synthesis from Magma, and Designer software from Actel.
PALACE is an effective tool when designing with ProASICPLUS. PALACE AE Physical Synthesis from Magma takes an EDIF netlist and optimizes the performance of ProASIC ${ }^{\text {PLUS }}$ devices through a physical placement-driven process, ensuring that timing closure is easily achieved.
Actel's Designer software is a place-and-route tool that provides a comprehensive suite of back-end support tools for FPGA development. The Designer software includes the following:

- Timer - a world-class integrated static timing analyzer and constraints editor that support timing-driven place-and-route
- NetlistViewer - a design netlist schematic viewer
- ChipPlanner - a graphical floorplanner viewer and editor
- SmartPower - allows the designer to quickly estimate the power consumption of a design
- PinEditor - a graphical application for editing pin assignments and I/O attributes
- I/O Attribute Editor - displays all assigned and unassigned I/O macros and their attributes in a spreadsheet format

With the Designer software, a user can lock the design pins before layout while minimally impacting the results of place-and-route. Additionally, Actel's back-annotation flow is compatible with all the major simulators. Another tool included in the Designer software is the SmartGen macro builder, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design.
Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from EDA vendors, such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

ISP

The user can generate *.bit or *.stp programming files from the Designer software and can use these files to program a device.
ProASICPLUS devices can be programmed in-system. For more information on ISP of ProASICPLUS devices, refer to the In-System Programming ProASICPLUS Devices and Performing Internal In-System Programming Using Actel's ProASICPLUS Devices application notes. Prior to being programmed for the first time, the ProASIC ${ }^{-1 U S S}$ device I/Os are in a tristate condition with the pull-up resistor option enabled.

Related Documents

Application Notes

Efficient Use of ProASIC Clock Trees
http://www.actel.com/documents/A500K_Clocktree_AN.pdf
I/O Features in ProASICPLUS Flash FPGAs
http://www.actel.com/documents/APA_LVPECL_AN.pdf
Power-Up Behavior of ProASICPLUS Devices
http://www.actel.com/documents/APA_PowerUp_AN.pdf
ProASICPLUS PLL Dynamic Reconfiguration Using JTAG
http://www.actel.com/documents/APA_PLLdynamic_AN.pdf
Using ProASICPLUS Clock Conditioning Circuits
http://www.actel.com/documents/APA_PLL_AN.pdf
In-System Programming ProASICPLUS Devices
http://www.actel.com/documents/APA_External_ISP_AN.pdf
Performing Internal In-System Programming Using Actel's ProASICPLUS Devices
http://www.actel.com/documents/APA_Microprocessor_AN.pdf
ProASIC ${ }^{\text {PLUS }}$ RAM and FIFO Blocks
http://www.actel.com/documents/APA_RAM_FIFO_AN.pdf

White Paper

Design Security in Nonvolatile Flash and Antifuse FPGAs
http://www.actel.com/documents/DesignSecurity_WP.pdf

User's Guide

Designer User's Guide
http://www.actel.com/documents/designer_UG.pdf
SmartGen Cores Reference Guide
http://www.actel.com/documents/gen_refguide_ug.pdf
ProASIC and ProASICPLUS Macro Library Guide
http://www.actel.com/documents/pa_libguide_UG.pdf

Additional Information

The following link contains additional information on ProASIC는 devices. http://www.actel.com/products/proasicplus/default.aspx

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Package Thermal Characteristics

The ProASICPLUS family is available in several package types with a range of pin counts. Actel has selected packages based on high pin count, reliability factors, and superior thermal characteristics.
Thermal resistance defines the ability of a package to conduct heat away from the silicon, through the package to the surrounding air. Junction-to-ambient thermal resistance is measured in degrees Celsius/Watt and is represented as Theta ja (Θ_{ja}). The lower the thermal resistance, the more efficiently a package will dissipate heat.
A package's maximum allowed power (P) is a function of maximum junction temperature (T_{j}), maximum ambient operating temperature (T_{A}), and junction-to-ambient thermal resistance $\Theta_{\mathrm{j} a}$. Maximum junction temperature is
the maximum allowable temperature on the active surface of the $I C$ and is $110^{\circ} \mathrm{C}$. P is defined as:

$$
P=\frac{T_{j}-T_{A}}{\Theta_{j a}}
$$

EQ 1-4
Θ_{ja} is a function of the rate (in linear feet per minute (lfpm)) of airflow in contact with the package. When the estimated power consumption exceeds the maximum allowed power, other means of cooling, such as increasing the airflow rate, must be used. The maximum power dissipation allowed for a Military temperature device is specified as a function of Θ_{jc}. The absolute maximum junction temperature is $150^{\circ} \mathrm{C}$.
The calculation of the absolute maximum power dissipation allowed for a Military temperature application is illustrated in the following example for a 456-pin PBGA package:

Maximum Power Allowed $=\frac{\text { Max. junction temp. }\left({ }^{\circ} \mathrm{C}\right)-\text { Max. case temp. }\left({ }^{\circ} \mathrm{C}\right)}{\theta_{j c}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)}=\frac{150^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}}{3.0^{\circ} \mathrm{C} / \mathrm{W}}=8.333 \mathrm{~W}$

Table 1-16 • Package Thermal Characteristics

Plastic Packages	Pin Count	$\theta_{\text {jc }}$	$\theta_{\mathbf{j a}}$			Units
			Still Air	$1.0 \mathrm{~m} / \mathrm{s}$ $200 \mathrm{ft} . / \mathrm{min}$.	$2.5 \mathrm{~m} / \mathrm{s}$ $500 \mathrm{ft} . / \mathrm{min}$.	
Thin Quad Flat Pack (TQFP)	100	14.0	33.5	27.4	25.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thin Quad Flat Pack (TQFP)	144	11.0	33.5	28.0	25.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Quad Flat Pack (PQFP) ${ }^{1}$	208	8.0	26.1	22.5	20.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
PQFP with Heat spreader ${ }^{2}$	208	3.8	16.2	13.3	11.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Ball Grid Array (PBGA)	456	3.0	15.6	12.5	11.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA)	144	3.8	26.9	22.9	21.5	${ }^{\circ} \mathrm{CM}$
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.6	22.8	21.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA) ${ }^{3}$	484	3.2	18.0	14.7	13.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA) ${ }^{4}$	484	3.2	20.5	17.0	15.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA)	676	3.2	16.4	13.0	12.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA)	896	2.4	13.6	10.4	9.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA)	1152	1.8	12.0	8.9	7.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic Quad Flat Pack (CQFP)	208	2.0	22.0	19.8	18.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic Quad Flat Pack (CQFP)	352	2.0	17.9	16.1	14.7	${ }^{\circ} \mathrm{CM}$
Ceramic Column Grid Array (CCGA/LGA)	624	6.5	8.9	8.5	8.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

1. Valid for the following devices irrespective of temperature grade: APA075, APA150, and APA300
2. Valid for the following devices irrespective of temperature grade: APA450, APA600, APA750, and APA1000
3. Depopulated Array
4. Full array

Calculating Typical Power Dissipation

ProASIC $\stackrel{\text { PLUS }}{ }$ device power is calculated with both a static and an active component. The active component is a function of both the number of tiles utilized and the system speed. Power dissipation can be calculated using the following formula:

Total Power Consumption- $P_{\text {total }}$

$$
P_{\text {total }}=P_{d c}+P_{a c}
$$

where:
$P_{d c}=7 \mathrm{~mW}$ for the APA075 8 mW for the APA150

11 mW for the APA300
12 mW for the APA450
12 mW for the APA600
13 mW for the APA750
19 mW for the APA1000
$P_{d c}$ includes the static components of $P_{V D D P}+P_{V D D}+P_{\text {AVDD }}$
$P_{\mathrm{ac}}=P_{\text {clock }}+P_{\text {storage }}+P_{\text {logic }}+P_{\text {outputs }}+P_{\text {inputs }}+P_{\text {pll }}+P_{\text {memory }}$

Global Clock Contribution- $\mathbf{P}_{\text {clock }}$

$P_{\text {clock, }}$, the clock component of power dissipation, is given by the piece-wise model:
for $R<15000$ the model is: ($P 1+(P 2 * R)$ - ($P 7 * R 2$)) * Fs (lightly-loaded clock trees)
for $R>15000$ the model is: (P10 + P11*R) * Fs (heavily-loaded clock trees)
where:
P1 $=100 \mu \mathrm{~W} / \mathrm{MHz}$ is the basic power consumption of the clock tree per MHz of the clock
P2 $=1.3 \mu \mathrm{~W} / \mathrm{MHz}$ is the incremental power consumption of the clock tree per storage tile - also per MHz of the clock
P7 $=0.00003 \mu \mathrm{~W} / \mathrm{MHz}$ is a correction factor for partially-loaded clock trees
P10 $=6850 \mu \mathrm{~W} / \mathrm{MHz}$ is the basic power consumption of the clock tree per MHz of the clock
P11 $=0.4 \mu \mathrm{~W} / \mathrm{MHz}$ is the incremental power consumption of the clock tree per storage tile - also per MHz of the clock
$R=$ the number of storage tiles clocked by this clock
Fs = the clock frequency

Storage-Tile Contribution- $\mathrm{P}_{\text {storage }}$

$P_{\text {storage, }}$ the storage-tile (Register) component of AC power dissipation, is given by

$$
P_{\text {storage }}=P 5 * \mathrm{~ms} * \mathrm{Fs}
$$

where:

P 5	$=1.1 \mu \mathrm{~W} / \mathrm{MHz}$ is the average power consumption of a storage tile per MHz of its output toggling rate. The
	maximum output toggling rate is $\mathrm{Fs} / 2$.
ms	$=$ the number of storage tiles (Register) switching during each Fs cycle
Fs	$=$ the clock frequency

Logic-Tile Contribution-P ${ }_{\text {logic }}$

$\mathrm{P}_{\text {logic, }}$, the logic-tile component of AC power dissipation, is given by

$$
\mathrm{P}_{\text {logic }}=\mathrm{P3} \text { * mc * Fs }
$$

where:
P3 $=1.4 \mu \mathrm{~W} / \mathrm{MHz}$ is the average power consumption of a logic tile per MHz of its output toggling rate. The maximum output toggling rate is $\mathrm{Fs} / 2$.
$\mathrm{mc}=$ the number of logic tiles switching during each Fs cycle
$\mathrm{Fs}=$ the clock frequency
I/O Output Buffer Contribution-P ${ }_{\text {outputs }}$
$P_{\text {outputs }}$, the I/O component of AC power dissipation, is given by

$$
P_{\text {outputs }}=\left(P 4+\left(C_{\text {load }} * V_{\text {DDP }}{ }^{2}\right)\right) * p * F p
$$

where:
P4 $=326 \mu \mathrm{~W} / \mathrm{MHz}$ is the intrinsic power consumption of an output pad normalized per MHz of the output frequency. This is the total I/O current $\mathrm{V}_{\mathrm{DDP}}$
$C_{\text {load }}=$ the output load
$\mathrm{p}=$ the number of outputs
$\mathrm{Fp}=$ the average output frequency
I/O Input Buffer's Buffer Contribution- $\mathbf{P}_{\text {inputs }}$
The input's component of AC power dissipation is given by

$$
P_{\text {inputs }}=P 8 * q * F q
$$

where:
P8 $=29 \mu \mathrm{~W} / \mathrm{MHz}$ is the intrinsic power consumption of an input pad normalized per MHz of the input frequency.
$\mathrm{q}=$ the number of inputs
$\mathrm{Fq}=$ the average input frequency

PLL Contribution- $\mathrm{P}_{\text {pII }}$

$$
P_{\mathrm{pll\mid}}=\mathrm{Pg} * N_{\mathrm{pl\mid l}}
$$

where:
P9 $=7.5 \mathrm{~mW}$. This value has been estimated at maximum PLL clock frequency.
$\mathrm{N}_{\mathrm{PII}}=$ number of PLLs used
RAM Contribution- $P_{\text {memory }}$
Finally, $\mathrm{P}_{\text {memory }}$ the memory component of AC power consumption, is given by

$$
P_{\text {memory }}=P 6 * N_{\text {memory }} * F_{\text {memory }} * E_{\text {memory }}
$$

where:
$\left.\begin{array}{ll}\text { P6 } & =175 \mu \mathrm{~W} / \mathrm{MHz} \text { is the average power consumption of a memory block per } \mathrm{MHz} \text { of the clock } \\ \mathrm{N}_{\text {memory }} & =\text { the number of RAM/FIFO blocks } \\ & \text { (1 block } 256 \text { words * } 9 \text { bits) }\end{array}\right] \begin{aligned} & \mathrm{F}_{\text {memory }}=\text { the clock frequency of the memory } \\ & \mathrm{E}_{\text {memory }}=\text { the average number of active blocks divided by the total number of blocks (} \mathrm{N} \text {) of the memory. }\end{aligned}$

- Typical values for $\mathrm{E}_{\text {memory }}$ would be $1 / 4$ for a $1 \mathrm{k} \times 8,9,16,32$ memory and $1 / 16$ for a 4 kx 8 , 9,16 , and 32 memory configuration
- In addition, an application-dependent component to $\mathrm{E}_{\text {memory }}$ can be considered. For example, for a 1 kx 8 memory configuration using only 1 cycle out of 2 , $E_{\text {memory }}=1 / 4 * 1 / 2=1 / 8$

The following is an APA750 example using a shift register design with 13,440 storage tiles (Register) and 0 logic tiles. This design has one clock at 10 MHz , and 24 outputs toggling at 5 MHz . We then calculate the various components as follows:

```
\(\mathrm{P}_{\text {clock }}\)
    Fs \(=10 \mathrm{MHz}\)
    \(R=13,440\)
\(\Rightarrow \quad P_{\text {clock }}=\left(P 1+(P 2 * R)-\left(P 7 * R^{2}\right)\right) * F s=121.5 \mathrm{~mW}\)
\(\mathbf{P}_{\text {storage }}\)
            \(\mathrm{ms}=13,440\) (in a shift register \(100 \%\) of storage tiles are toggling at each clock cycle and \(\mathrm{Fs}=10 \mathrm{MHz}\) )
\(\Rightarrow P_{\text {storage }}=P 5\) * ms * Fs \(=147.8 \mathrm{~mW}\)
\(P_{\text {logic }}\)
    \(\mathrm{mc}=0\) (no logic tiles in this shift register)
\(\Rightarrow P_{\text {logic }}=0 \mathrm{~mW}\)
\(P_{\text {outputs }}\)
    \(C_{\text {load }}=40 \mathrm{pF}\)
    \(V_{\text {DDP }}=3.3 \mathrm{~V}\)
        \(\mathrm{p}=24\)
        \(\mathrm{Fp}=5 \mathrm{MHz}\)
\(\Rightarrow \quad P_{\text {outputs }}=\left(P 4+\left(C_{\text {load }} * V_{\text {DDP }}{ }^{2}\right)\right) * p * F p=91.4 \mathrm{~mW}\)
\(P_{\text {inputs }}\)
        \(\mathrm{q}=1\)
        \(\mathrm{Fq}=10 \mathrm{MHz}\)
\(\Rightarrow P_{\text {inputs }}=P 8 * q * F q=0.3 \mathrm{~mW}\)
\(\mathbf{P}_{\text {memory }}\)
        \(\mathrm{N}_{\text {memory }}=0\) (no RAM/FIFO blocks in this shift register)
\(\Rightarrow P_{\text {memory }}=0 \mathrm{~mW}\)
\(P_{\text {ac }}\)
=> 361 mW
\(\mathbf{P}_{\text {total }}\)
\(\mathrm{P}_{\mathrm{dc}}+\mathrm{P}_{\mathrm{ac}}=374 \mathrm{~mW}\) (typical)
```

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Operating Conditions

Standard and -F parts are the same unless otherwise noted. All -F parts are only available as commercial.
Table 1-17 • Absolute Maximum Ratings*

Parameter	Condition	Minimum	Maximum	Units
Supply Voltage Core (V_{DD})		-0.3	3.0	V
Supply Voltage I/O Ring (VDP)		-0.3	4.0	V
DC Input Voltage		-0.3	$\mathrm{~V}_{\text {DDP }}+0.3$	V
PCI DC Input Voltage		-1.0	$\mathrm{~V}_{\text {DDP }}+1.0$	V
PCI DC Input Clamp Current (absolute)	$\mathrm{V}_{\mathbb{I N}}<-1$ or $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{DDP}}+1 \mathrm{~V}$	10		mA
LVPECL Input Voltage		-0.3	$\mathrm{~V}_{\mathrm{DDP}}+0.5$	V
GND		0	0	V

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 1-18 • Programming, Storage, and Operating Limits

Product Grade	Programming Cycles (min.)	Program Retention (min.)	Storage Temperature		Operating
			Min.	Max.	TJ Max. Junction Temperature
Commercial	500	20 years	$-55^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$
Industrial	500	20 years	$-55^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$
Military	100	Refer to Table 1-19 on page 1-35	$-65^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
MIL-STD-883	100	Refer to Table 1-19 on page 1-35	$-65^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$

Performance Retention

For devices operated and stored at $110^{\circ} \mathrm{C}$ or less, the performance retention period is 20 years after programming. For devices operated and stored at temperatures greater than $110^{\circ} \mathrm{C}$, refer to Table 1-19 on page 1-35 to determine the performance retention period. Actel does not guarantee performance if the performance retention period is exceeded. Designers can determine the performance retention period from the following table.
Evaluate the percentage of time spent at the highest temperature, then determine the next highest temperature to which the device will be exposed. In Table 1-19 on page 1-35, find the temperature profile that most closely matches the application.

Example - the ambient temperature of a system cycles between $100^{\circ} \mathrm{C}\left(25 \%\right.$ of the time) and $50^{\circ} \mathrm{C}(75 \%$ of the time). No forced ventilation cooling system is in use. An APA600-PQ208M FPGA operates in the system, dissipating 1 W . The package thermal resistance (junction-to-ambient) in still air Θ_{ja} is $20^{\circ} \mathrm{C} / \mathrm{W}$, indicating that the junction temperature of the FPGA will be $120^{\circ} \mathrm{C}$ (25% of the time) and $70^{\circ} \mathrm{C}$ (75% of the time). The entry in Table 1-19 on page 1-35, which most closely matches the application, is 25% at $125^{\circ} \mathrm{C}$ with 75% at $110^{\circ} \mathrm{C}$. Performance retention in this example is at least 16.0 years.
Note that exceeding the stated retention period may result in a performance degradation in the FPGA below the worst-case performance indicated in the Actel Timer. To ensure that performance does not degrade below the worst-case values in the Actel Timer, the FPGA must be reprogrammed within the performance retention period. In addition, note that performance retention is independent of whether or not the FPGA is operating. The retention period of a device in storage at a given temperature will be the same as the retention period of a device operating at that junction temperature.

Table 1-19 • Military Temperature Grade Product Performance Retention

Minimum Time at T_{J} $110^{\circ} \mathrm{C}$ or below	Minimum Time at T_{J} $125^{\circ} \mathrm{C}$ or below	Minimum Time at $\mathrm{T}_{\mathbf{J}}$ $135^{\circ} \mathrm{C}$ or below	Minimum Time at T_{J} $150^{\circ} \mathrm{C}$ or below	Minimum Performance Retention (Years)
100\%				20.0
90\%	10\%			18.2
75\%	25\%			16
90\%		10\%		15.4
50\%	50\%			13.3
90\%			10\%	11.8
75\%		25\%		11.4
	100\%			10
	90\%	10\%		9.1
50\%		50\%		8
	75\%	25\%		8
	90\%		10\%	7.7
75\%			25\%	7.3
	50\%	50\%		6.7
	75\%		25\%	5.7
		100\%		5
		90\%	10\%	4.5
50\%			50\%	4.4
	50\%		50\%	4
		75\%	25\%	4
		50\%	50\%	3.3
			100\%	2.5

Table 1-20 • Recommended Maximum Operating Conditions Programming and PLL Supplies

Parameter	Condition	Commercial/Ind	ary/MIL-STD-883	Units
		Minimum	Maximum	
$\mathrm{V}_{\text {PP }}$	During Programming	15.8	16.5	V
	Normal Operation ${ }^{1}$	0	16.5	V
$\mathrm{V}_{\text {PN }}$	During Programming	-13.8	-13.2	V
	Normal Operation²	-13.8	0.5	V
Ipp	During Programming		25	mA
IPN	During Programming		10	mA
AVDD		$V_{\text {DD }}$	$V_{\text {DD }}$	V
AGND		GND	GND	V

Notes:

1. Please refer to the "VPP Programming Supply Pin" section on page 1-78 for more information.
2. Please refer to the "VPN Programming Supply Pin" section on page 1-78 for more information.

Table 1-21 • Recommended Operating Conditions

Parameter	Symbol	Limits		
		Commercial	Industrial	Military/MIL-STD-883
DC Supply Voltage (2.5 V I/Os)	$V_{\text {DD }}$ and $V_{\text {DDP }}$	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$
DC Supply Voltage (3.3 V I/Os)	$V_{\text {DDP }}$ $V_{D D}$	$\begin{aligned} & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \end{aligned}$
Operating Ambient Temperature Range	$\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{C}}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{A}}\right)$ to $125^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{C}}\right)$
Maximum Operating Junction Temperature	T_{J}	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$

Note: For I/O long-term reliability, external pull-up resistors cannot be used to increase output voltage above $V_{D D P}$.

Table 1-22 • DC Electrical Specifications ($\mathbf{V}_{\text {DDP }}=\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2 V}$)

Symbol	Parameter	Conditions		Commercial/Industrial/ Military/MIL-STD-8831, ${ }^{2}$			Units
				Min.	Typ.	Max.	
V_{OH}	Output High Voltage High Drive (OB25LPH) Low Drive (OB25LPL)	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 2.1 \\ & 2.0 \\ & 1.7 \\ & 2.1 \\ & 1.9 \\ & 1.7 \end{aligned}$			V
V_{OL}	Output Low Voltage High Drive (OB25LPH) Low Drive (OB25LPL)	$\left\{\begin{array}{l} \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{array}\right.$				$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.7 \\ & 0.2 \\ & 0.4 \\ & 0.7 \end{aligned}$	V
$\mathrm{V}_{1 \mathrm{H}^{6}}$	Input High Voltage			1.7		$\mathrm{V}_{\text {DDP }}+0.3$	V
$\mathrm{V}_{\text {LL }}{ }^{7}$	Input Low Voltage			-0.3		0.7	V
R WEAKPULLUP	Weak Pull-up Resistance (OTB25LPU)	$\mathrm{V}_{\text {IN }} \geq 1.25 \mathrm{~V}$		6		56	k Ω
HYST	Input Hysteresis Schmitt	See Table 1-4 on page 1-9		0.3	0.35	0.45	V
${ }^{1 / \mathrm{N}}$	Input Current	with pull up ($\left.\mathrm{V}_{\mathbb{I N}}=\mathrm{GND}\right)$		-240		- 20	$\mu \mathrm{A}$
		without pull up ($\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{DD})		-10		10	$\mu \mathrm{A}$
IDDQ	Quiescent Supply Current (standby) Commercial	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{4} \text { or } \mathrm{V}_{\mathrm{DD}}$	Std.		5.0	15	mA
			$-\mathrm{F}^{3}$		5.0	25	mA
${ }^{\text {I D Q }}$	Quiescent Supply Current (standby) Industrial	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{4}$ or V_{DD}	Std.		5.0	20	mA
${ }^{\text {I DDQ }}$	Quiescent Supply Current (standby) Military/MIL-STD-883	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{4}$ or V_{DD}	Std.		5.0	25	mA
${ }^{\text {IOZ }}$	Tristate Output Leakage Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{GND}$ or V_{DD}	Std.	-10		10	$\mu \mathrm{A}$
			$-\mathrm{F}^{3,5}$	-10		100	$\mu \mathrm{A}$

Notes:

1. All process conditions. Commercial/Industrial: Junction Temperature: -40 to $+110^{\circ} \mathrm{C}$.
2. All process conditions. Military: Junction Temperature: -55 to $+150^{\circ} \mathrm{C}$.
3. All -F parts are available only as commercial.
4. No pull-up resistor.
5. This will not exceed 2 mA total per device.
6. During transitions, the input signal may overshoot to $V_{D D P}+1.0 \mathrm{~V}$ for a limited time of no larger than 10% of the duty cycle.
7. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

Table 1-22 • DC Electrical Specifications ($\mathbf{V}_{\text {DDP }}=\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2 V}$) (Continued)

Symbol	Parameter	Conditions	Commercial/Industrial/ Military/MIL-STD-883 ${ }^{1,2}$			Units
			Min.	Typ.	Max.	
IOSH	Output Short Circuit Current High High Drive (OB25LPH) Low Drive (OB25LPL)	$\begin{aligned} & V_{I N}=V_{S S} \\ & V_{I N}=V_{S S} \end{aligned}$	$\begin{aligned} & -120 \\ & -100 \end{aligned}$			mA
lost	Output Short Circuit Current Low High Drive (OB25LPH) Low Drive (OB25LPL)	$\begin{aligned} & V_{I N}=V_{D D P} \\ & V_{I N}=V_{D D P} \end{aligned}$			$\begin{gathered} 100 \\ 30 \end{gathered}$	mA
$\mathrm{C}_{1 / \mathrm{O}}$	I/O Pad Capacitance				10	pF
$\mathrm{C}_{\text {CLK }}$	Clock Input Pad Capacitance				10	pF

Notes:

1. All process conditions. Commercial/Industrial: Junction Temperature: -40 to $+110^{\circ} \mathrm{C}$.
2. All process conditions. Military: Junction Temperature: -55 to $+150^{\circ} \mathrm{C}$.
3. All $-F$ parts are available only as commercial.
4. No pull-up resistor.
5. This will not exceed 2 mA total per device.
6. During transitions, the input signal may overshoot to $V_{D D P}+1.0 \mathrm{~V}$ for a limited time of no larger than 10% of the duty cycle.
7. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

Table 1-23 • DC Electrical Specifications ($\mathbf{V}_{\mathrm{DDP}}=3.3 \mathbf{V} \pm \mathbf{0 . 3} \mathbf{V}$ and $\mathbf{V}_{\mathrm{DD}}=\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2} \mathbf{V}$)
Applies to Commercial and Industrial Temperature Only

Symbol	Parameter	Conditions		Commercial/Industrial ${ }^{\mathbf{1}}$			Units
				Min.	Typ.	Max.	
V_{OH}	Output High Voltage 3.3 V I/O, High Drive (OB33P) 3.3 V I/O, Low Drive (OB33L)	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-14 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.9 * V_{D D P} \\ 2.4 \\ 0.9 * V_{\text {DDP }} \\ 2.4 \end{gathered}$			V
V_{OL}	Output Low Voltage 3.3 V I/O, High Drive (OB33P) 3.3 V I/O, Low Drive (OB33L)	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=28 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=7 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$				$\begin{gathered} 0.1 \mathrm{~V}_{\mathrm{DDP}} \\ 0.4 \\ 0.7 \\ \\ 0.1 \mathrm{~V}_{\mathrm{DDP}} \\ 0.4 \\ 0.7 \end{gathered}$	V
$\mathrm{V}_{\mathrm{IH}}{ }^{5}$	Input High Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTLILVCMOS 2.5 V Mode			$\begin{gathered} 1.6 \\ 2 \\ 1.7 \end{gathered}$		$\begin{aligned} & V_{D D P}+0.3 \\ & V_{D D P}+0.3 \\ & V_{D D P}+0.3 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}{ }^{6}$	Input Low Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTL/LVCMOS 2.5 V Mode			$\begin{aligned} & -0.3 \\ & -0.3 \\ & -0.3 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.7 \end{aligned}$	V
$\mathrm{R}_{\text {WEAKPULLUP }}$	Weak Pull-up Resistance (IOB33U)	$\mathrm{V}_{\text {IN }} \geq 1.5 \mathrm{~V}$		7		43	$\mathrm{k} \Omega$
R WEAKPULLUP	Weak Pull-up Resistance (IOB25U)	$\mathrm{V}_{\mathrm{IN}} \geq 1.5 \mathrm{~V}$		7		43	$k \Omega$
${ }^{1} \mathrm{~N}$	Input Current	with pull up ($\left.\mathrm{V}_{\mathbb{I N}}=\mathrm{GND}\right)$		-300		-40	$\mu \mathrm{A}$
		without pull up ($\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)$		-10		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {DDQ }}$	Quiescent Supply Current	$V_{I N}=G N D^{3}$ or $V_{\text {DD }}$	Std.		5.0	15	mA
	(standby) Commercial		$-\mathrm{F}^{2}$		5.0	25	mA
${ }^{\text {DDQ }}$	Quiescent Supply Current (standby) Industrial	$\mathrm{V}_{\mathrm{IN}}=G N D^{3}$ or V_{DD}	Std.		5.0	20	mA
$\mathrm{I}_{\text {DDQ }}$	Quiescent Supply Current (standby) Military	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{3}$ or V_{DD}	Std.		5.0	25	mA

Notes:

1. All process conditions. Commercial/Industrial: Junction Temperature: -40 to $+110^{\circ} \mathrm{C}$.
2. All $-F$ parts are only available as commercial.
3. No pull-up resistor required.
4. This will not exceed 2 mA total per device.
5. During transitions, the input signal may overshoot to $V_{D D P}+1.0 \mathrm{~V}$ for a limited time of no larger than 10% of the duty cycle.
6. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Table 1-23 • DC Electrical Specifications ($\mathbf{V}_{\mathrm{DDP}}=3.3 \mathbf{V} \pm \mathbf{0 . 3} \mathbf{V}$ and $\mathbf{V}_{\mathrm{DD}}=\mathbf{2 . 5} \mathbf{V} \pm \mathbf{0 . 2} \mathbf{~ V}$) (Continued) Applies to Commercial and Industrial Temperature Only

Symbol	Parameter	Conditions		Commercial/Industrial ${ }^{\mathbf{1}}$			Units
				Min.	Typ.	Max.	
loz	Tristate Output Leakage Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{GND}$ or V_{DD}	Std.	-10		10	$\mu \mathrm{A}$
			$-\mathrm{F}^{2,4}$	-10		100	$\mu \mathrm{A}$
IOSH	Output Short Circuit Current High 3.3 V High Drive (OB33P) 3.3 V Low Drive (OB33L)	$\begin{aligned} & V_{I N}=G N D \\ & V_{I N}=G N D \end{aligned}$		$\begin{aligned} & -200 \\ & -100 \end{aligned}$			
losl	Output Short Circuit Current Low 3.3 V High Drive 3.3 V Low Drive	$\begin{aligned} & V_{I N}=V_{D D} \\ & V_{I N}=V_{D D} \end{aligned}$				$\begin{aligned} & 200 \\ & 100 \end{aligned}$	
$\mathrm{C}_{1 / 0}$	I/O Pad Capacitance					10	pF
$\mathrm{C}_{\text {CLK }}$	Clock Input Pad Capacitance					10	pF

Notes:

1. All process conditions. Commercial/Industrial: Junction Temperature: -40 to $+110^{\circ} \mathrm{C}$.
2. All $-F$ parts are only available as commercial.
3. No pull-up resistor required.
4. This will not exceed 2 mA total per device.
5. During transitions, the input signal may overshoot to $V_{D D P}+1.0 \mathrm{~V}$ for a limited time of no larger than 10% of the duty cycle.
6. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

Table 1-24 • DC Electrical Specifications ($\mathbf{V}_{\mathrm{DDP}}=3.3 \mathrm{~V} \pm \mathbf{0 . 3} \mathbf{V}$ and $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm \mathbf{0 . 2} \mathbf{V}$) Applies to Military Temperature and MIL-STD-883B Temperature Only

Symbol	Parameter	Conditions		Military/MIL-STD-883B ${ }^{1}$			Units
				Min.	Typ.	Max.	
V_{OH}	Output High Voltage 3.3 V I/O, High Drive, High Slew (OB33PH) 3.3V I/O, High Drive, Normal/ Low Slew (OB33PN/OB33PL) 3.3 V I/O, Low Drive , High/ Normal/Low Slew (OB33LH/ OB33LN/OB33LL)	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.9 * V_{\text {DDP }} \\ 2.4 \\ 0.9 * V_{\text {DDP }} \\ 2.4 \\ \\ 0.9 * V_{D D P} \\ 2.4 \end{gathered}$			V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage 3.3 V I/O, High Drive, High Slew (OB33PH) 3.3V I/O, High Drive, Normal/ Low Slew (OB33PN/OB33PL)) 3.3 V I/O, Low Drive, High/ Normal/Low Slew (OB33LH/ OB33LN/OB33LL)	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=17 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=28 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=13 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=13 \mathrm{~mA} \end{aligned}$				$0.1 \mathrm{~V}_{\text {DDP }}$ 0.4 0.7 $0.1 \mathrm{~V}_{\text {DDP }}$ 0.4 0.7 $0.1 \mathrm{~V}_{\text {DDP }}$ 0.4 0.7	V
$\mathrm{V}_{\mathrm{IH}}{ }^{4}$	Input High Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTL/LVCMOS 2.5 V Mode			$\begin{gathered} 1.6 \\ 2 \\ 1.7 \end{gathered}$		$\begin{aligned} & V_{D D P}+0.3 \\ & V_{D D P}+0.3 \\ & V_{D D P}+0.3 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}{ }^{5}$	Input Low Voltage 3.3 V Schmitt Trigger Inputs 3.3 V LVTTL/LVCMOS 2.5 V Mode			$\begin{aligned} & -0.3 \\ & -0.3 \\ & -0.3 \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.8 \\ & 0.7 \end{aligned}$	V
$\mathrm{R}_{\text {WEAKPULLUP }}$	Weak Pull-up Resistance (IOB33U)	$\mathrm{V}_{\text {IN }} \geq 1.5 \mathrm{~V}$		7		43	$k \Omega$
$\mathrm{R}_{\text {WEAKPULLUP }}$	Weak Pull-up Resistance (IOB25U)	$\mathrm{V}_{\text {IN }} \geq 1.5 \mathrm{~V}$		7		43	k Ω
1 IN	Input Current	with pull up ($\mathrm{V}_{\mathbb{1 N}}=\mathrm{GND}$)		-300		-40	$\mu \mathrm{A}$
		without pull up ($\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or V_{DD})		-10		10	$\mu \mathrm{A}$
${ }^{\text {DDQ }}$	Quiescent Supply Current (standby) Commercial	$\mathrm{V}_{\text {IN }}=\mathrm{GND}^{2}$ or V_{DD}	Std.		5.0	15	mA
			-F		5.0	25	mA

Notes:

1. All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: -55 to $+125^{\circ} \mathrm{C}$.
2. No pull-up resistor required.
3. This will not exceed 2 mA total per device.
4. During transitions, the input signal may overshoot to $V_{D D P}+1.0 \mathrm{~V}$ for a limited time of no larger than 10% of the duty cycle.
5. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Table 1-24 • DC Electrical Specifications ($\mathbf{V}_{\mathrm{DDP}}=3.3 \mathrm{~V} \pm \mathbf{0 . 3} \mathbf{V}$ and $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm \mathbf{0 . 2} \mathbf{V}$) (Continued) Applies to Military Temperature and MIL-STD-883B Temperature Only

Symbol	Parameter	Conditions		Military/MIL-STD-883B ${ }^{\mathbf{1}}$			Units
				Min.	Typ.	Max.	
${ }^{\text {DDQ }}$	Quiescent Supply Current (standby) Industrial	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{2}$ or V_{DD}	Std.		5.0	20	mA
${ }^{\text {DDQ }}$	Quiescent Supply Current (standby) Military	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{2}$ or V_{DD}	Std.		5.0	25	mA
loz	TristateCurrent Output Leakage	$V_{O H}=G N D$ or $V_{\text {DD }}$	Std.	-10		10	$\mu \mathrm{A}$
			$-\mathrm{F}^{3}$	-10		100	$\mu \mathrm{A}$
losh	Output Short Circuit Current High 3.3 V High Drive (OB33P) 3.3 V Low Drive (OB33L)	$\begin{aligned} & V_{I N}=G N D \\ & V_{I N}=G N D \end{aligned}$		$\begin{aligned} & -200 \\ & -100 \end{aligned}$			
IOSL	Output Short Circuit Current Low 3.3 V High Drive 3.3 V Low Drive	$\begin{aligned} & V_{I N}=V_{D D} \\ & V_{I N}=V_{D D} \end{aligned}$				$\begin{aligned} & 200 \\ & 100 \end{aligned}$	
$\mathrm{C}_{\text {I/O }}$	I/O Pad Capacitance					10	pF
$\mathrm{C}_{\text {CLK }}$	Clock Input Pad Capacitance					10	pF

Notes:

1. All process conditions. Military Temperature / MIL-STD-883 Class B: Junction Temperature: -55 to $+125^{\circ} \mathrm{C}$.
2. No pull-up resistor required.
3. This will not exceed 2 mA total per device.
4. During transitions, the input signal may overshoot to $V_{D D P}+1.0 \mathrm{~V}$ for a limited time of no larger than 10% of the duty cycle.
5. During transitions, the input signal may undershoot to -1.0 V for a limited time of no larger than 10% of the duty cycle.

Table 1-25 • DC Specifications (3.3 V PCI Operation) ${ }^{\mathbf{1}}$

Symbol	Parameter	Condition		Commercial/ Industrial ${ }^{2,3}$		Military/MIL-STD- 883 ${ }^{\mathbf{2 , 3}}$		Units
				Min.	Max.	Min.	Max.	
$V_{\text {DD }}$	Supply Voltage for Core			2.3	2.7	2.3	2.7	V
$V_{\text {DDP }}$	Supply Voltage for I/O Ring			3.0	3.6	3.0	3.6	V
V_{IH}	Input High Voltage			$0.5 \mathrm{~V}_{\text {DDP }}$	$V_{\text {DDP }}+0.5$	$0.5 \mathrm{~V}_{\text {DDP }}$	$V_{\text {DDP }}+0.5$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.5	$0.3 \mathrm{~V}_{\text {DDP }}$	-0.5	$0.3 \mathrm{~V}_{\text {DDP }}$	V
1 IPU	Input Pull-up Voltage ${ }^{4}$			$0.7 \mathrm{~V}_{\text {DDP }}$		$0.7 \mathrm{~V}_{\text {DDP }}$		V
IIL	Input Leakage Current ${ }^{5}$	$0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {DDP }}$	Std.	-10	10	-50	50	$\mu \mathrm{A}$
			$-\mathrm{F}^{3,6}$	-10	100			$\mu \mathrm{A}$
V_{OH}	Output High Voltage	lout $=-500 \mu \mathrm{~A}$		$0.9 \mathrm{~V}_{\text {DDP }}$		$0.9 \mathrm{~V}_{\text {DDP }}$		V
V_{OL}	Output Low Voltage	lout $=1500 \mu \mathrm{~A}$			$0.1 \mathrm{~V}_{\text {DDP }}$		$0.1 \mathrm{~V}_{\text {DDP }}$	V
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance (except CLK)				10		10	pF
$\mathrm{C}_{\text {CLK }}$	CLK Pin Capacitance			5	12	5	12	pF

Notes:

1. For PCI operation, use GL33, OTB33PH, OB33PH, IOB33PH, IB33, or IB33S macro library cell only.
2. All process conditions. Junction Temperature: -40 to $+110^{\circ} \mathrm{C}$ for Commercial and Industrial devices and -55 to $+125^{\circ} \mathrm{C}$ for Military.
3. All -F parts are available as commercial only.
4. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Designers with applications sensitive to static power utilization should ensure that the input buffer is conducting minimum current at this input voltage.
5. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
6. The sum of the leakage currents for all inputs shall not exceed $2 m A$ per device.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Table 1-26 • AC Specifications (3.3 V PCI Revision 2.2 Operation)

Symbol	Parameter	Condition	Commercial/Industrial/Military/MIL-STD-883		Units
			Min.	Max.	
${ }^{\text {OH(AC) }}$	Switching Current High	$0<\mathrm{V}_{\text {OUT }} \leq 0.3 \mathrm{~V}_{\text {DDP }}{ }^{*}$	$-12 V_{\text {DDP }}$		mA
		$0.3 \mathrm{~V}_{\text {DDP }} \leq \mathrm{V}_{\text {OUT }}<0.9 \mathrm{~V}_{\text {DDP }}{ }^{*}$	$\left(-17.1+\left(V_{\text {DDP }}-V_{\text {OUT }}\right)\right)$		mA
		$0.7 \mathrm{~V}_{\text {DDP }}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {DDP }}{ }^{*}$		See equation C - page 124 of the PCI Specification document rev. 2.2	
	(Test Point)	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}_{\text {DDP }}{ }^{*}$		$-32 V_{\text {DDP }}$	mA
${ }^{\text {IOL(AC) }}$	Switching Current Low	$\mathrm{V}_{\text {DDP }}>\mathrm{V}_{\text {OUT }} \geq 0.6 \mathrm{~V}_{\text {DDP }}{ }^{*}$	$16 \mathrm{~V}_{\text {DDP }}$		mA
		$0.6 \mathrm{~V}_{\text {DDP }}>\mathrm{V}_{\text {OUT }}>0.1 \mathrm{~V}_{\text {DDP }}{ }^{1}$	(26.7V ${ }_{\text {OUT }}$)		mA
		$0.18 \mathrm{~V}_{\text {DDP }}>\mathrm{V}_{\text {OUT }}>0^{*}$		See equation D - page 124 of the PCI Specification document rev. 2.2	
	(Test Point)	$\mathrm{V}_{\text {OUT }}=0.18 \mathrm{~V}_{\text {DDP }}$		$38 \mathrm{~V}_{\text {DDP }}$	mA
${ }_{\text {CL }}$	Low Clamp Current	$-3<\mathrm{V}_{\text {IN }} \leq-1$	$-25+\left(V_{\text {IN }}+1\right) / 0.015$		mA
I_{CH}	High Clamp Current	$\mathrm{V}_{\text {DDP }}+4>\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {DDP }}+1$	$25+\left(V_{\text {IN }}-V_{\text {DDP }}-1\right) / 0.015$		mA
slew $_{\text {R }}$	Output Rise Slew Rate	$0.2 \mathrm{~V}_{\text {DDP }}$ to $0.6 \mathrm{~V}_{\text {DDP }}$ load *	1	4	V/ns
slew $_{\text {F }}$	Output Fall Slew Rate	$0.6 \mathrm{~V}_{\text {DDP }}$ to $0.2 \mathrm{~V}_{\text {DDP }}$ load *	1	4	V/ns

Note: * Refer to the PCI Specification document rev. 2.2.
Pad Loading Applicable to the Rising Edge PCI

Pad Loading Applicable to the Falling Edge PCI

Tristate Buffer Delays

Figure 1-26 • Tristate Buffer Delays
Table 1-27 • Worst-Case Commercial Conditions
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Macro Type	Description	$\begin{gathered} \operatorname{Max}_{1} \\ \mathbf{t}_{\text {DLL }} \end{gathered}$		$\underset{\mathbf{t}_{\text {DHL }}}{\mathbf{M a x}_{2}}$		$\operatorname{Max}_{\mathbf{t}_{\mathrm{ENZH}}}$		$\underset{\text { tenzL }^{\text {Max }}}{ }$		Units
		Std.	-F	Std.	-F	Std.	-F	Std.	-F	
OTB33PH	3.3 V, PCI Output Current, High Slew Rate	2.0	2.4	2.2	2.6	2.2	2.6	2.0	2.4	ns
OTB33PN	3.3 V, High Output Current, Nominal Slew Rate	2.2	2.6	2.9	3.5	2.4	2.9	2.1	2.5	ns
OTB33PL	3.3 V, High Output Current, Low Slew Rate	2.5	3.0	3.2	3.9	2.7	3.3	2.8	3.4	ns
OTB33LH	3.3 V, Low Output Current, High Slew Rate	2.6	3.1	4.0	4.8	2.8	3.4	3.0	3.6	ns
OTB33LN	3.3 V, Low Output Current, Nominal Slew Rate	2.9	3.5	4.3	5.2	3.2	3.8	4.1	4.9	ns
OTB33LL	3.3 V, Low Output Current, Low Slew Rate	3.0	3.6	5.6	6.7	3.3	3.9	5.5	6.6	ns

Notes:

1. $t_{D L H}=$ Data-to-Pad High
2. $t_{D H L}=$ Data-to-Pad Low
3. $t_{E N Z H}=$ Enable-to-Pad, Z to High
4. $t_{\text {ENZL }}=$ Enable-to-Pad, Z to Low
5. All -F parts are only available as commercial.

Table 1-28 • Worst-Case Commercial Conditions
$\mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Macro Type	Description	$\begin{gathered} \operatorname{Max}_{1} \\ \mathbf{t}_{\text {DLL }} \end{gathered}$		$\underset{\mathbf{t}_{\text {DHL }}}{\mathbf{M a x}_{2}}$		$\operatorname{Max}_{\mathbf{t}_{\mathrm{ENZH}}}$		$\underset{\text { Max }_{\text {ENZL }}}{4}$		Units
		Std.	-F	Std.	-F	Std.	-F	Std.	-F	
OTB25LPHH	2.5 V, Low Power, High Output Current, High Slew Rate ${ }^{5}$	2.0	2.4	2.1	2.5	2.3	2.7	2.0	2.4	ns
OTB25LPHN	2.5 V, Low Power, High Output Current, Nominal Slew Rate ${ }^{5}$	2.4	2.9	3.0	3.6	2.7	3.2	2.1	2.5	ns
OTB25LPHL	2.5 V, Low Power, High Output Current, Low Slew Rate ${ }^{5}$	2.9	3.5	3.2	3.8	3.1	3.8	2.7	3.2	ns
OTB25LPLH	2.5 V, Low Power, Low Output Current, High Slew Rate ${ }^{5}$	2.7	3.3	4.6	5.5	3.0	3.6	2.6	3.1	ns

Notes:

1. $t_{D L H}=$ Data-to-Pad High
2. $t_{D H L}=$ Data-to-Pad Low
3. $t_{E N Z H}=$ Enable-to-Pad, Z to High
4. $t_{E N Z L}=$ Enable-to-Pad, Z to Low
5. Low power I/O work with $V_{D D P}=2.5 \mathrm{~V} \pm 10 \%$ only. $V_{D D P}=2.3 \mathrm{~V}$ for delays.
6. All $-F$ parts are only available as commercial.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Table 1-28 • Worst-Case Commercial Conditions
$V_{D D P}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Macro Type	Description	$\underset{\mathbf{t}_{\text {DLH }}}{\operatorname{Max}_{1}}$		$\underset{\mathbf{t}_{\text {DHL }}}{\mathbf{M a x}_{2}}$		$\operatorname{Max}_{\mathbf{t}_{\mathrm{ENZH}}}$		$\begin{gathered} \operatorname{Max}_{4} \\ \mathbf{t}_{\text {ENZL }} \end{gathered}$		Units
		Std.	-F	Std.	-F	Std.	-F	Std.	-F	
OTB25LPLN	2.5 V, Low Power, Low Output Current, Nominal Slew Rate ${ }^{5}$	3.5	4.2	4.2	5.1	3.8	4.5	3.8	4.6	ns
OTB25LPLL	2.5 V, Low Power, Low Output Current, Low Slew Rate ${ }^{5}$	4.0	4.8	5.3	6.4	4.2	5.1	5.1	6.1	ns

Notes.

1. $t_{D L H}=$ Data-to-Pad High
2. $t_{D H L}=$ Data-to-Pad Low
3. $t_{E N Z H}=$ Enable-to-Pad, Z to High
4. $t_{E N Z L}=$ Enable-to-Pad, Z to Low
5. Low power I/O work with $V_{D D P}=2.5 \mathrm{~V} \pm 10 \%$ only. $V_{D D P}=2.3 \mathrm{~V}$ for delays.
6. All -F parts are only available as commercial.

Table 1-29 • Worst-Case Military Conditions
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Macro Type	Description	$\begin{gathered} \operatorname{Max} \\ \mathbf{t}_{\text {DLH }}^{1} \end{gathered}$	$\underset{\mathbf{t}_{\text {DHLL }}^{2}}{\mathbf{M a x}_{2}}$	$\underset{\mathbf{t}_{\mathrm{ENZH}}}{\operatorname{Max}_{3}}$	$\underset{\mathbf{t}_{\text {ENZL }}}{\text { Max }_{4}}$	Units
		Std.	Std.	Std.	Std.	
OTB33PH	3.3 V, PCI Output Current, High Slew Rate	2.2	2.4	2.3	2.1	ns
OTB33PN	3.3 V, High Output Current, Nominal Slew Rate	2.4	3.2	2.7	2.3	ns
OTB33PL	3.3 V, High Output Current, Low Slew Rate	2.7	3.5	2.9	3.0	ns
OTB33LH	3.3 V, Low Output Current, High Slew Rate	2.7	4.3	3.0	3.1	ns
OTB33LN	3.3 V, Low Output Current, Nominal Slew Rate	3.3	4.7	3.4	4.4	ns
OTB33LL	3.3 V, Low Output Current, Low Slew Rate	3.2	6.0	3.5	5.9	ns

Notes:

1. $t_{D L H}=$ Data-to-Pad High
2. $t_{D H L}=$ Data-to-Pad Low
3. $t_{E N Z H}=$ Enable-to-Pad, Z to High
4. $t_{\text {ENZL }}=$ Enable-to-Pad, Z to Low

Table 1-30 • Worst-Case Military Conditions
$\mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Macro Type	Description	Max $\mathrm{t}_{\mathrm{DLH}}{ }^{1}$	$\underset{\mathbf{t}_{\text {DHL }}^{2}}{\operatorname{Max}_{2}}$	$\operatorname{Max}_{\mathbf{t}_{\text {ENZH }}}$	$\operatorname{Max}_{\mathbf{t}_{\text {ENZL }}}$	Units
		Std.	Std.	Std.	Std.	
OTB25LPHH	2.5 V, Low Power, High Output Current, High Slew Rate ${ }^{5}$	2.3	2.3	2.4	2.1	ns
OTB25LPHN	2.5 V, Low Power, High Output Current, Nominal Slew Rate ${ }^{5}$	2.7	3.2	2.8	2.1	ns
OTB25LPHL	2.5 V, Low Power, High Output Current, Low Slew Rate ${ }^{5}$	3.2	3.5	3.3	2.8	ns
OTB25LPLH	2.5 V, Low Power, Low Output Current, High Slew Rate ${ }^{5}$	3.0	5.0	3.2	2.8	ns
OTB25LPLN	2.5 V, Low Power, Low Output Current, Nominal Slew Rate ${ }^{5}$	3.7	4.5	4.1	4.1	ns

Table 1-30 • Worst-Case Military Conditions
$\mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Macro Type	Description	$\begin{aligned} & \operatorname{Max}_{1} \\ & \mathbf{t}_{\text {DLH }} \end{aligned}$	$\begin{aligned} & \operatorname{Max}_{2} \\ & \mathbf{t}_{\mathrm{DHL}}^{2} \end{aligned}$	$\operatorname{Max}_{\mathbf{t}_{\text {ENZH }}^{3}}$	$\underset{\text { Max }_{\text {ENZL }}^{4}}{ }$	Units
		Std.	Std.	Std.	Std.	
OTB25LPLL	2.5 V, Low Power, Low Output Current, Low Slew Rate ${ }^{5}$	4.4	5.8	4.4	5.4	ns

Notes:

1. $t_{\text {DLH }}=$ Data-to-Pad High
2. $t_{D H L}=$ Data-to-Pad Low
3. $t_{E N Z H}=$ Enable-to-Pad, Z to High
4. $t_{E N Z L}=$ Enable-to-Pad, Z to Low
5. Low power I/O work with $V_{D D P}=2.5 \mathrm{~V} \pm 10 \%$ only. $V_{D D P}=2.3 \mathrm{~V}$ for delays.

Output Buffer Delays

Figure 1-27 • Output Buffer Delays

Table 1-31 • Worst-Case Commercial Conditions
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Macro Type	Description	Max tily ${ }^{1}$		Max $\mathrm{t}_{\text {DHL }}{ }^{2}$		Units
		Std.	-F	Std.	-F	
OB33PH	3.3 V, PCI Output Current, High Slew Rate	2.0	2.4	2.2	2.6	ns
OB33PN	3.3 V, High Output Current, Nominal Slew Rate	2.2	2.6	2.9	3.5	ns
OB33PL	3.3 V, High Output Current, Low Slew Rate	2.5	3.0	3.2	3.9	ns
OB33LH	3.3 V, Low Output Current, High Slew Rate	2.6	3.1	4.0	4.8	ns
OB33LN	3.3 V, Low Output Current, Nominal Slew Rate	2.9	3.5	4.3	5.2	ns
OB33LL	3.3 V, Low Output Current, Low Slew Rate	3.0	3.6	5.6	6.7	ns

Notes:

1. $t_{D L H}=$ Data-to-Pad High
2. $t_{D H L}=$ Data-to-Pad Low
3. All -F parts are only available as commercial.

Table 1-32 • Worst-Case Commercial Conditions
$\mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Macro Type	Description	Max $\mathbf{t}_{\text {dLH }}{ }^{1}$		Max $\mathrm{t}_{\text {DHL }}{ }^{2}$		Units
		Std.	-F	Std.	-F	
OB25LPHH	2.5 V, Low Power, High Output Current, High Slew Rate ${ }^{3}$	2.0	2.4	2.1	2.6	ns
OB25LPHN	2.5 V, Low Power, High Output Current, Nominal Slew Rate ${ }^{3}$	2.4	2.9	3.0	3.6	ns
OB25LPHL	2.5 V, Low Power, High Output Current, Low Slew Rate ${ }^{3}$	2.9	3.5	3.2	3.8	ns
OB25LPLH	2.5 V, Low Power, Low Output Current, High Slew Rate ${ }^{3}$	2.7	3.3	4.6	5.5	ns
OB25LPLN	2.5 V, Low Power, Low Output Current, Nominal Slew Rate ${ }^{3}$	3.5	4.2	4.2	5.1	ns
OB25LPLL	2.5 V, Low Power, Low Output Current, Low Slew Rate ${ }^{3}$	4.0	4.8	5.3	6.4	ns

Notes:

1. $t_{D L H}=$ Data-to-Pad High
2. $t_{D H L}=$ Data-to-Pad Low
3. Low-power I/Os work with $V_{D D P}=2.5 \mathrm{~V} \pm 10 \%$ only. $V_{D D P}=2.3 \mathrm{~V}$ for delays.
4. All $-F$ parts are only available as commercial.

Table 1-33 • Worst-Case Military Conditions
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Macro Type	Description	Max. $\mathrm{t}_{\mathrm{DLH}}{ }^{1}$	Max. $\mathrm{t}_{\mathrm{DHL}}{ }^{2}$	Units
		Std.	Std.	
OB33PH	3.3V, PCI Output Current, High Slew Rate	2.1	2.3	ns
OB33PN	3.3V, High Output Current, Nominal Slew Rate	2.5	3.2	ns
OB33PL	3.3V, High Output Current, Low Slew Rate	2.7	3.5	ns
OB33LH	3.3V, Low Output Current, High Slew Rate	2.7	4.3	ns
OB33LN	3.3V, Low Output Current, Nominal Slew Rate	3.3	4.7	ns
OB33LL	3.3V, Low Output Current, Low Slew Rate	3.3	6.1	ns

Notes:

1. $t_{D L H}=$ Data-to-Pad High
2. $t_{D H L}=$ Data-to-Pad Low

Table 1-34 • Worst-Case Military Conditions
$\mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF}$ load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Macro Type	Description	Max. $\mathrm{t}_{\mathrm{DLH}}{ }^{1}$	$\begin{aligned} & \text { Max. } \\ & \mathbf{t}_{\text {DHL }}^{2} \end{aligned}$	Units
		Std.	Std.	
OB25LPHH	2.5V, Low Power, High Output Current, High Slew Rate ${ }^{3}$	2.3	2.4	ns
OB25LPHN	2.5V, Low Power, High Output Current, Nominal Slew Rate ${ }^{3}$	2.7	3.3	ns
OB25LPHL	2.5V, Low Power, High Output Current, Low Slew Rate ${ }^{3}$	3.2	3.5	ns
OB25LPLH	2.5V, Low Power, Low Output Current, High Slew Rate ${ }^{3}$	3.0	5.0	ns
OB25LPLN	2.5V, Low Power, Low Output Current, Nominal Slew Rate ${ }^{3}$	3.9	4.6	ns
OB25LPLL	2.5V, Low Power, Low Output Current, Low Slew Rate ${ }^{3}$	4.3	5.7	ns

Notes:

1. $t_{D L H}=$ Data-to-Pad High
2. $t_{D H L}=$ Data-to-Pad Low
3. Low power I/O work with $V_{D D P}=2.5 \mathrm{~V} \pm 10 \%$ only. $V_{D D P}=2.3 \mathrm{~V}$ for delays.
\qquad

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Input Buffer Delays

Figure 1-28 • Input Buffer Delays
Table 1-35 - Worst-Case Commercial Conditions
$\mathbf{V}_{\mathrm{DDP}}=\mathbf{3 . 0} \mathbf{~ V , ~} \mathbf{V}_{\mathrm{DD}}=2.3 \mathbf{~ V ,} \mathbf{T}_{\mathbf{J}}=70^{\circ} \mathrm{C}$

Macro Type	Description	Max. $\mathrm{t}_{\text {INYH }}{ }^{1}$		Max. $\mathrm{t}_{\text {INYL }}{ }^{2}$		Units
		Std.	-F	Std.	-F	
IB33	3.3 V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor	0.4	0.5	0.6	0.7	ns
IB33S	3.3 V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor, Schmitt Trigger	0.6	0.7	0.8	0.9	ns

Notes:

1. $t_{I N Y H}=$ Input Pad-to- Y High
2. $t_{I N Y L}=$ Input Pad-to- Y Low
3. LVTTL delays are the same as CMOS delays.
4. For $L P$ Macros, $V_{D D P}=2.3 V$ for delays.
5. All -F parts are only available as commercial.

Table 1-36 - Worst-Case Commercial Conditions
$V_{D D P}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Macro Type	Description	Max. $\mathrm{t}_{\text {INYH }}{ }^{1}$		Max. tinYL^{2}		Units
		Std.	-F	Std.	-F	
IB25LP	2.5 V, CMOS Input Levels ${ }^{3}$, Low Power	0.9	1.1	0.6	0.8	ns
IB25LPS	2.5 V, CMOS Input Levels ${ }^{3}$, Low Power, Schmitt Trigger	0.7	0.9	0.9	1.1	ns

Notes:

1. $t_{I N Y H}=$ Input Pad-to- Y High
2. $t_{I N Y L}=$ Input Pad-to- Y Low
3. LVTTL delays are the same as CMOS delays.
4. For $L P$ Macros, $V_{D D P}=2.3 V$ for delays.
5. All -F parts are only available as commercial.

Table 1-37 • Worst-Case Military Conditions
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Macro Type	Description	Max. $\mathbf{t i N Y H}^{1}$	Max. $\mathbf{t I N Y L}^{\mathbf{2}}$	Units
		Std.	Std.	
IB33	3.3V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor	0.5	0.6	ns
IB33S	3.3V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor, Schmitt Trigger	0.6	0.8	ns

Notes:

1. $t_{I N Y H}=$ Input Pad-to- Y High
2. $t_{I M Y L}=$ Input Pad-to- Y Low
3. LVTTL delays are the same as CMOS delays.
4. For $L P$ Macros, $V_{D D P}=2.3 \mathrm{~V}$ for delays.

Table 1-38 • Worst-Case Military Conditions $\mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Macro Type	Description	Max. $\mathrm{t}_{\text {INYH }}{ }^{1}$	Max. $\mathrm{t}_{\mathrm{INYL}}{ }^{2}$	Units
		Std.	Std.	
IB25LP	2.5V, CMOS Input Levels ${ }^{3}$, Low Power	0.9	0.7	ns
IB25LPS	2.5V, CMOS Input Levels ${ }^{3}$, Low Power, Schmitt Trigger	0.8	1.0	ns

Notes:

1. $t_{I N Y H}=$ Input Pad-to- Y High
2. $t_{I N Y L}=$ Input Pad-to-Y Low
3. LVTTL delays are the same as CMOS delays.
4. For $L P$ Macros, $V_{D D P}=2.3 \mathrm{~V}$ for delays.
\qquad

Global Input Buffer Delays

Table 1-39 • Worst-Case Commercial Conditions
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Macro Type	Description	Max. $\mathrm{t}_{\text {INYH }}{ }^{1}$		Max. $\mathrm{t}_{\text {INYL }}{ }^{2}$		Units
		Std. ${ }^{3}$	-F	Std. ${ }^{3}$	-F	
GL33	3.3 V, CMOS Input Levels ${ }^{4}$, No Pull-up Resistor	1.0	1.2	1.1	1.3	ns
GL33S	3.3 V, CMOS Input Levels ${ }^{4}$, No Pull-up Resistor, Schmitt Trigger	1.0	1.2	1.1	1.3	ns
PECL	PPECL Input Levels	1.0	1.2	1.1	1.3	ns

Notes:

1. $t_{I N Y H}=$ Input Pad-to- Y High
2. $t_{I N Y L}=$ Input Pad-to- Y Low
3. Applies to Military ProASICPLUS devices.
4. LVTTL delays are the same as CMOS delays.
5. For $L P$ Macros, $V_{D D P}=2.3 \mathrm{~V}$ for delays.
6. All -F parts are only available as commercial.

Table 1-40 • Worst-Case Commercial Conditions

$$
V_{D D P}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}
$$

Macro Type	Description	Max. $\mathrm{t}_{\mathbf{I N Y H}}{ }^{1}$		Max. $\mathrm{t}_{\text {INYL }}{ }^{2}$		Units
		Std. ${ }^{3}$	-F	Std. ${ }^{3}$	-F	
GL25LP	2.5 V, CMOS Input Levels ${ }^{4}$, Low Power	1.1	1.2	1.0	1.3	ns
GL25LPS	2.5 V, CMOS Input Levels ${ }^{4}$, Low Power, Schmitt Trigger	1.3	1.6	1.0	1.1	ns

Notes:

1. $t_{I N Y H}=$ Input Pad-to- Y High
2. $t_{I N Y L}=$ Input Pad-to-Y Low
3. Applies to Military ProASICPLUS devices.
4. LVTTL delays are the same as CMOS delays.
5. For $L P$ Macros, $V_{D D P}=2.3 \mathrm{~V}$ for delays.
6. All -F parts are only available as commercial.

Table 1-41 • Worst-Case Military Conditions
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Macro Type	Description	Max. $\mathrm{t}_{\text {INYH }}{ }^{1}$	Max. $\mathrm{t}_{\text {INYL }}{ }^{2}$
		Std.	Std.
GL33	3.3V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor	1.1	1.1
GL33S	3.3V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor, Schmitt Trigger	1.1	1.1
PECL	PPECL Input Levels	1.1	1.1

Notes:

1. $t_{I N Y H}=$ Input Pad-to- Y High
2. $t_{I N Y L}=$ Input Pad-to- Y Low
3. LVTTL delays are the same as CMOS delays.
4. For $L P$ Macros, $V_{D D P}=2.3 \mathrm{~V}$ for delays.

Table 1-42 • Worst-Case Military Conditions
$\mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Macro Type	Description	Max. $\mathrm{t}_{\text {INYH }}{ }^{1}$	Max. $\mathrm{t}_{\text {INYL }}{ }^{2}$
		Std.	Std.
GL25LP	2.5V, CMOS Input Levels ${ }^{3}$, Low Power	1.0	1.1
GL25LPS	2.5V, CMOS Input Levels ${ }^{3}$, Low Power, Schmitt Trigger	1.4	1.0

Notes:

1. $t_{\text {INYH }}=$ Input Pad-to- Y High
2. $t_{I N Y L}=$ Input Pad-to- Y Low
3. LVTTL delays are the same as CMOS delays.
4. For $L P$ Macros, $V_{D D P}=2.3 \mathrm{~V}$ for delays.

Predicted Global Routing Delay

Table 1-43 • Worst-Case Commercial Conditions ${ }^{1}$
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Parameter	Description	Max.		Units
		Std.	- $\mathbf{F}^{\mathbf{2}}$	
$t_{\text {RCKH }}$	Input Low to High ${ }^{3}$	1.1	1.3	ns
$\mathrm{t}_{\text {RCKL }}$	Input High to Low ${ }^{3}$	1.0	1.2	ns
$\mathrm{t}_{\text {RCKH }}$	Input Low to High ${ }^{4}$	0.8	1.0	ns
$t_{\text {RCKL }}$	Input High to Low ${ }^{4}$	0.8	1.0	ns

Notes:

1. The timing delay difference between tile locations is less than 15 ps.
2. All $-F$ parts are only available as commercial.
3. Highly loaded row 50%.
4. Minimally loaded row.

Table 1-44 • Worst-Case Military Conditions
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Parameter	Description	Max.	Units
$t_{R C K H}$	Input Low to High (high loaded row of 50\%)	1.1	ns
$t_{R C K L}$	Input High to Low (high loaded row of 50\%)	1.0	ns
$t_{\text {RCKH }}$	Input Low to High (minimally loaded row)	0.8	ns
$t_{R C K L}$	Input High to Low (minimally loaded row)	0.8	ns

Note: * The timing delay difference between tile locations is less than 15 ps .

Global Routing Skew

Table 1-45 • Worst-Case Commercial Conditions
$\mathrm{V}_{\text {DDP }}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Parameter	Description	Max.		Units
		Std.	-F*	
$t_{\text {RCKSW }}$	Maximum Skew Low to High	270	320	ps
$\mathrm{t}_{\text {RCKSHH }}$	Maximum Skew High to Low	270	320	ps

Note: *All -F parts are only available as commercial.
Table 1-46 • Worst-Case Commercial Conditions
$\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Parameter	Description	Max.	Units
$t_{\text {RCKSWH }}$	Maximum Skew Low to High	270	ps
$t_{\text {RCKSHH }}$	Maximum Skew High to Low	270	ps

\qquad

Module Delays

Figure 1-29 • Module Delays

Sample Macrocell Library Listing

Table 1-47 - Worst-Case Military Conditions ${ }^{1}$
$V_{D D}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{J}}=\mathbf{7 0 ^ { \circ } \mathrm { C } ,} \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ for Military/MIL-STD-883

Cell Name	Description		Std.		- $\mathbf{F}^{\mathbf{2}}$		Units
			Max	Min	Max	Min	
NAND2	2-Input NAND		0.5		0.6		ns
AND2	2-Input AND		0.7		0.8		ns
NOR3	3-Input NOR		0.8		1.0		ns
MUX2L	2-1 MUX with Active Low Select		0.5		0.6		ns
OA21	2-Input OR into a 2-Input AND		0.8		1.0		ns
XOR2	2-Input Exclusive OR		0.6		0.8		ns
LDL	Active Low Latch (LH/HL) CLK-Q	LH^{3}	0.9		1.1		ns
		HL^{3}	0.8		0.9		ns
	$\mathrm{t}_{\text {setup }}$			0.7		0.8	ns
	$\mathrm{t}_{\text {hold }}$			0.1		0.2	ns
DFFL	Negative Edge-Triggered D-type Flip-Flop (LH/HL) CLK-Q	LH^{3}	0.9		1.1		ns
		HL^{3}	0.8		1.0		ns
	$\mathrm{t}_{\text {setup }}$			0.6		0.7	ns
	$\mathrm{t}_{\text {hold }}$			0.0		0.0	ns

Notes:

[^0]ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Table 1-48 • Recommended Operating Conditions

Parameter	Symbol	Limits	
		Commercial/Industrial	Military/MIL-STD-883
Maximum Clock Frequency*	$\mathrm{f}_{\text {CLOCK }}$	180 MHz	180 MHz
Maximum RAM Frequency*	$\mathrm{f}_{\text {RAM }}$	150 MHz	150 MHz
Maximum Rise/Fall Time on Inputs* - Schmitt Trigger Mode (10\% to 90\%) - Non-Schmitt Trigger Mode (10\% to 90\%)	$\begin{aligned} & t_{R} / t_{F} \\ & t_{R} / t_{F} \end{aligned}$	$\begin{gathered} \text { N/A } \\ 100 \mathrm{~ns} \end{gathered}$	$\begin{gathered} 100 \mathrm{~ns} \\ 10 \mathrm{~ns} \end{gathered}$
Maximum LVPECL Frequency*		180 MHz	180 MHz
Maximum TCK Frequency (JTAG)	$\mathrm{f}_{\text {TCK }}$	10 MHz	10 MHz

Note: *All -F parts will be 20\% slower than standard commercial devices.
Table 1-49 • Slew Rates Measured at C=30pF, Nominal Power Supplies and $25^{\circ} \mathrm{C}$

Type	Trig. Level	Rising Edge (ns)	Slew Rate (V/ns)	Falling Edge (ns)	Slew Rate (V/ns)	PCI Mode
OB33PH	$10 \%-90 \%$	1.60	1.65	1.65	1.60	Yes
OB33PN	$10 \%-90 \%$	1.57	1.68	3.32	0.80	No
OB33PL	$10 \%-90 \%$	1.57	1.68	1.99	1.32	No
OB33LH	$10 \%-90 \%$	3.80	0.70	4.84	0.55	No
OB33LN	$10 \%-90 \%$	4.19	0.63	3.37	0.78	No
OB33LL	$10 \%-90 \%$	5.49	0.48	2.98	0.89	No
OB25LPHH	$10 \%-90 \%$	1.55	1.29	1.56	1.28	No
OB25LPHN	$10 \%-90 \%$	1.70	1.18	2.08	0.96	No
OB25LPHL	$10 \%-90 \%$	1.97	1.02	3.09	0.96	No
OB25LPLH	$10 \%-90 \%$	3.57	0.46	3.28	0.51	No
OB25LPLN	$10 \%-90 \%$	4.65	0.56	3.44	0.61	No
OB25LPLL	$10 \%-90 \%$	5.52			No	

Notes:

1. Standard and $-F$ parts.
2. All -F only available as commercial.

Table 1-50 • JTAG Switching Characteristics

Description	Symbol	Min	Max	Unit
Output delay from TCK falling to TDI, TMS	$\mathrm{t}_{\text {TCKTDI }}$	-4	4	ns
TDO Setup time before TCK rising	$\mathrm{t}_{\text {TDOTCK }}$	10		ns
TDO Hold time after TCK rising	$\mathrm{t}_{\text {TCKTDO }}$	0		ns
TCK period	$\mathrm{t}_{\text {TCK }}$	100^{2}	1,000	ns
RCK period	$\mathrm{t}_{\text {RCK }}$	100	1,000	ns

Notes:

1. For DC electrical specifications of the JTAG pins (TCK, TDI, TMS, TDO, TRST), refer to Table 1-22 on page 1-37 when $V_{D D P}=2.5 \mathrm{~V}$ and Table 1-24 on page 1-41 when $V_{D D P}=3.3 \mathrm{~V}$.
2. If RCK is being used, there is no minimum on the TCK period.

Figure 1-30 • JTAG Operation Timing

Embedded Memory Specifications

This section discusses ProASIC른 SRAM/FIFO embedded memory and its interface signals, including timing diagrams that show the relationships of signals as they pertain to single embedded memory blocks (Table 1-51). Table 1-13 on page 1-24 shows basic SRAM and FIFO configurations. Simultaneous read and write to the same location must be done with care. On such accesses the DI bus is output to the DO bus. Refer to the ProASICPLUS RAM and FIFO Blocks application note for more information.

Enclosed Timing Diagrams—SRAM Mode:

- "Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)" section on page 1-59
- "Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)" section on page 1-60
- "Asynchronous SRAM Write" section on page 1-61
- "Asynchronous SRAM Read, Address Controlled, RDB $=0$ " section on page 1-62
- "Asynchronous SRAM Read, RDB Controlled" section on page 1-63
- "Synchronous SRAM Write"
- Embedded Memory Specifications

The difference between synchronous transparent and pipeline modes is the timing of all the output signals from the memory. In transparent mode, the outputs will change within the same clock cycle to reflect the data requested by the currently valid access to the memory. If clock cycles are short (high clock speed), the data requires most of the clock cycle to change to valid values (stable signals). Processing of this data in the same clock cycle is nearly impossible. Most designers add registers at all outputs of the memory to push the data processing into the next clock cycle. An entire clock cycle can then be used to process the data. To simplify use of this memory setup, suitable registers have been implemented as part of the memory primitive and are available to the user in the synchronous pipeline mode. In this mode, the output signals will change shortly after the second rising edge, following the initiation of the read access.

Table 1-51 • Memory Block SRAM Interface Signals

SRAM Signal	Bits	In/Out	
WCLKS	1	In	Write clock used on synchronization on write side
RCLKS	1	In	Read clock used on synchronization on read side
RADDR<0:7>	8	In	Read address
RBLKB	1	In	True read block select (active Low)
RDB	1	In	True read pulse (active Low)
WADDR<0:7>	8	In	Write address
WBLKB	1	In	Write block select (active Low)
DI<0:8>	9	In	Input data bits $<0: 8>,<8>$ can be used for parity In
WRB	9	In	Negative true write pulse
DO<0:8>	1	Out	Output data bits $<0: 8>,<8>$ can be used for parity Out
RPE	1	Out	Write parity error (active High)
WPE	1	In	Selects Odd parity generation/detect when high, Even when low
PARODD			

Note: Not all signals shown are used in all modes.

Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.
Figure 1-31 • Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)
Table 1-52 - $\mathbf{T}_{\mathbf{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathbf{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $\mathbf{2 . 7} \mathbf{V}$ for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol t $\mathbf{x x x ~}^{\prime \prime}$ Description	Min.	Max.	Units	Notes	
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
OCA	New DO access from RCLKS \uparrow	7.5		ns	
OCH	Old DO valid from RCLKS \uparrow		3.0	ns	
RACH	RADDR hold from RCLKS \uparrow	0.5		ns	
RACS	RADDR setup to RCLKS \uparrow	1.0		ns	
RDCH	RDB hold from RCLKS \uparrow	0.5		ns	
RDCS	RDB setup to RCLKS \uparrow	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	9.5		ns	
RPCH	Old RPE valid from RCLKS \uparrow		3.0	ns	

Note: All -F speed grade devices are 20\% slower than the standard numbers.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)

Note: The plot shows the normal operation status.
Figure 1-32 • Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
Table 1-53 - $\mathbf{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathbf{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $2.7 \mathbf{V}$ for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol t $\mathbf{x x x}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
OCA	New DO access from RCLKS \uparrow	2.0		ns	
OCH	Old DO valid from RCLKS \uparrow		0.75	ns	
RACH	RADDR hold from RCLKS \uparrow	0.5		ns	
RACS	RADDR setup to RCLKS \uparrow	1.0		ns	
RDCH	RDB hold from RCLKS \uparrow	0.5		ns	
RDCS	RDB setup to RCLKS \uparrow	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	4.0		ns	
RPCH	Old RPE valid from RCLKS \uparrow		1.0	ns	

Note: All -F speed grade devices are 20\% slower than the standard numbers.
\qquad

Asynchronous SRAM Write

Note: The plot shows the normal operation status.
Figure 1-33 • Asynchronous SRAM Write
Table 1-54 $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Commercial/industrial
$\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883B

Symbol t $\mathbf{x x x ~}^{\prime \mid}$ Description	Min.	Max.	Units	Notes	
AWRH	WADDR hold from WB \uparrow	1.0		ns	
AWRS	WADDR setup to WB \downarrow	0.5		ns	
DWRH	DI hold from WB \uparrow	1.5		ns	
DWRS	DI setup to WB \uparrow	0.5		ns	PARGEN is inactive.
DWRS	DI setup to WB \uparrow	2.5		ns	PARGEN is active.
WPDA	WPE access from DI	3.0		ns	WPE is invalid, while PARGEN is
WPDH	WPE hold from DI		1.0	ns	active.
WRCYC	Cycle time	7.5		ns	
WRMH	WB high phase	3.0		ns	Inactive
WRML	WB low phase	3.0		ns	Active

Note: All -F speed grade devices are 20\% slower than the standard numbers.

Asynchronous SRAM Read, Address Controlled, RDB=0

Note: The plot shows the normal operation status.
Figure 1-34 • Asynchronous SRAM Read, Address Controlled, RDB=0
Table 1-55 $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to 2.7 V for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883B

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
ACYC	Read cycle time	7.5		ns	
OAA	New DO access from RADDR stable	7.5		ns	
OAH	Old DO hold from RADDR stable		3.0	ns	
RPAA	New RPE access from RADDR stable	10.0		ns	
RPAH	Old RPE hold from RADDR stable		3.0	ns	

Note: All -F speed grade devices are 20\% slower than the standard numbers.

Asynchronous SRAM Read, RDB Controlled

Note: The plot shows the normal operation status.
Figure 1-35 • Asynchronous SRAM Read, RDB Controlled
Table 1-56 - $\mathrm{T}_{\mathbf{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$; $\mathbf{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $\mathbf{2 . 7} \mathbf{V}$ for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol t $\mathbf{x x x ~}^{\prime \mid}$ Description	Min.	Max.	Units	Notes	
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
RDCYC	Read cycle time	7.5		ns	
RDMH	RB high phase	3.0		ns	Inactive setup to new cycle
RDML	RB low phase	3.0		ns	Active
RPRDA	New RPE access from RB \downarrow	9.5		ns	
RPRDH	Old RPE valid from RB \downarrow		3.0	ns	

Note: All -F speed grade devices are 20\% slower than the standard numbers.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Synchronous SRAM Write

Note: The plot shows the normal operation status.
Figure 1-36 • Synchronous SRAM Write
Table 1-57 $\mathbf{T}_{\mathbf{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathbf{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $\mathbf{2 . 7} \mathbf{V}$ for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol t $\mathbf{x x x x}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
DCH	DI hold from WCLKS \uparrow	0.5		ns	
DCS	DI setup to WCLKS \uparrow	1.0		ns	
WACH	WADDR hold from WCLKS \uparrow	0.5		ns	
WDCS	WADDR setup to WCLKS \uparrow	1.0		ns	
WPCA	New WPE access from WCLKS \uparrow	3.0		ns	WPE is invalid while
WPCH	Old WPE valid from WCLKS \uparrow		0.5	ns	PARGEN is active
WRCH, WBCH	WRB \& WBLKB hold from WCLKS \uparrow	0.5		ns	
WRCS, WBCS	WRB \& WBLKB setup to WCLKS \uparrow	1.0		ns	

Notes:

1. On simultaneous read and write accesses to the same location, $D I$ is output to $D O$.
2. All $-F$ speed grade devices are 20% slower than the standard numbers.
\qquad

Synchronous Write and Read to the Same Location

* New data is read if WCLKS \uparrow occurs before setup time. The data stored is read if WCLKS \uparrow occurs after hold time.

Note: The plot shows the normal operation status.
Figure 1-37 • Synchronous Write and Read to the Same Location
Table 1-58 $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to 2.7 V for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
WCLKRCLKS	WCLKS \uparrow to RCLKS \uparrow setup time	-0.1		ns	
WCLKRCLKH	WCLKS \uparrow to RCLKS \uparrow hold time		7.0	ns	
OCH	Old DO valid from RCLKS \uparrow		3.0	ns	OCA/OCH displayed for Access Timed Output
OCA	New DO valid from RCLKS \uparrow	7.5		ns	

Notes:

1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
2. During synchronous write and synchronous read access to the same location, the new write data will be read out if the active write clock edge occurs before or at the same time as the active read clock edge. The negative setup time insures this behavior for WCLKS and RCLKS driven by the same design signal.
3. If WCLKS changes after the hold time, the data will be read.
4. A setup or hold time violation will result in unknown output data.
5. All -F speed grade devices are 20% slower than the standard numbers.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Asynchronous Write and Synchronous Read to the Same Location

* New data is read if WB \downarrow occurs before setup time.

The stored data is read if WB \downarrow occurs after hold time.
Note: The plot shows the normal operation status.
Figure 1-38 • Asynchronous Write and Synchronous Read to the Same Location
Table 1-59 $\mathrm{T}_{\mathbf{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to $\mathbf{2 . 7} \mathrm{V}$ for Commercial/industrial
$\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol t $\mathbf{x x x ~}^{\prime \mid}$ Description	Min.	Max.	Units	Notes	
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
WBRCLKS	WB \downarrow to RCLKS \uparrow setup time	-0.1		ns	
WBRCLKH	WB \downarrow to RCLKS \uparrow hold time		7.0	ns	
OCH	Old DO valid from RCLKS \uparrow		3.0	ns	OCA/OCH displayed for Access Timed Output
OCA	New DO valid from RCLKS \uparrow	7.5		ns	
DWRRCLKS	DI to RCLKS \uparrow setup time	0		ns	
DWRH	DI to WB \uparrow hold time		1.5	ns	

Notes:

1. This behavior is valid for Access Timed Output and Pipelined Mode Output. The table shows the timings of an Access Timed Output.
2. In asynchronous write and synchronous read access to the same location, the new write data will be read out if the active write signal edge occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be read.
3. A setup or hold time violation will result in unknown output data.
4. All -F speed grade devices are 20% slower than the standard numbers.
\qquad

Asynchronous Write and Read to the Same Location

Note: The plot shows the normal operation status.
Figure 1-39 • Asynchronous Write and Read to the Same Location
Table 1-60 - $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $\mathbf{2 . 7} \mathrm{V}$ for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol t $\mathbf{x x x ~}$	Description	Min.	Max.	Units	Notes
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
OWRA	New DO access from WB \uparrow	3.0		ns	
OWRH	Old DO valid from WB \uparrow		0.5	ns	
RAWRS	RB \downarrow or RADDR from WB \downarrow	5.0		ns	
RAWRH	RB \uparrow or RADDR from WB \uparrow	5.0		ns	

Notes:

1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically trigger a read operation which updates the read data. Refer to the ProASIC FLUS RAM and FIFO Blocks application note for more information.
2. Violation or RAWRS will disturb access to the OLD data.
3. Violation of RAWRH will disturb access to the NEWER data
4. All -F speed grade devices are 20% slower than the standard numbers.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Synchronous Write and Asynchronous Read to the Same Location

Note: The plot shows the normal operation status.
Figure 1-40 • Synchronous Write and Asynchronous Read to the Same Location
Table 1-61 $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol t t	Description	Min.	Max.	Units	Notes
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
OWRA	New DO access from WCLKS \downarrow	3.0		ns	
OWRH	Old DO valid from WCLKS \downarrow		0.5	ns	
RAWCLKS	RB \downarrow or RADDR from WCLKS \uparrow	5.0		ns	
RAWCLKH	RB \uparrow or RADDR from WCLKS \downarrow	5.0		ns	

Notes:

1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automatically trigger a read operation which updates the read data.
2. Violation of RAWCLKS will disturb access to OLD data.
3. Violation of RAWCLKH will disturb access to NEWER data.
4. All -F speed grade devices are 20% slower than the standard numbers.
\qquad

Asynchronous FIFO Full and Empty Transitions

The asynchronous FIFO accepts writes and reads while not full or not empty. When the FIFO is full, all writes are inhibited. Conversely, when the FIFO is empty, all reads are inhibited. A problem is created if the FIFO is written to during the transition from full to not full, or read during the transition from empty to not empty. The exact time at which the write or read operation changes from inhibited to accepted after the read (write) signal which causes the transition from full or empty to not full or not empty is indeterminate. For slow cycles, this indeterminate period starts 1 ns after the RB (WB) transition, which deactivates full or not empty and ends 3 ns after the RB (WB) transition. For fast cycles, the indeterminate period ends 3 ns (7.5 ns - RDL (WRL)) after the RB (WB) transition, whichever is later (Table 1-1 on page 1-7).
The timing diagram for write is shown in Figure 1-38 on page 1-66. The timing diagram for read is shown in Figure 1-39 on page 1-67. For basic SRAM configurations, see Table 1-14 on page 1-25. When reset is asserted, the
empty flag will be asserted, the counters will reset, the outputs go to zero, but the internal RAM is not erased.

Enclosed Timing Diagrams - FIFO Mode:

The following timing diagrams apply only to single cell; they are not applicable to cascaded cells. For more information, refer to the ProASIC ${ }^{P L U S}$ RAMIFIFO Blocks application note.

- "Asynchronous FIFO Read" section on page 1-71
- "Asynchronous FIFO Write" section on page 1-72
- "Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)" section on page 1-73
- "Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)" section on page 1-74
- "Synchronous FIFO Write" section on page 1-75
- "FIFO Reset" section on page 1-76

Table 1-62 • Memory Block FIFO Interface Signals

FIFO Signal	Bits	In/Out	
WCLKS	1	In	Wescription
RCLKS	1	In	Read clock used for synchronization on write side
LEVEL <0:7>*	8	In	Direct configuration implements static flag logic
RBLKB	1	In	Read block select (active Low)
RDB	1	In	Read pulse (active Low)
RESET	1	In	Reset for FIFO pointers (active Low)
WBLKB	1	In	Write block select (active Low)
DI<0:8>	9	In	Input data bits <0:8>, <8> will be generated if PARGEN is true
WRB	1	In	Write pulse (active Low)
FULL, EMPTY	2	Out	FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH*	2	Out	EQTH is true when the FIFO holds the number of words specified by the LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8>	9	Out	Output data bits <0:8>
RPE	1	Out	Read parity error (active High)
WPE	1	Out	Write parity error (active High)
LGDEP <0:2>	3	In	Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD	1	In	Selects Odd parity generation/detect when high, Even when low

Note: *LEVEL is always eight bits (0000.0000, 0000.0001). That means for values of DEPTH greater than 256, not all values will be possible, e.g. for DEPTH=512, the LEVEL can only have the values $2,4, \ldots, 512$. The LEVEL signal circuit will generate signals that indicate whether the FIFO is exactly filled to the value of LEVEL (EQTH) or filled equal or higher (GEQTH) than the specified LEVEL. Since counting starts at 0, EQTH will become true when the FIFO holds (LEVEL+1) words for 512-bit FIFOs.

Note: All -F speed grade devices are 20\% slower than the standard numbers.
Figure 1-41 • Write Timing Diagram

RB

Note: All -F speed grade devices are 20\% slower than the standard numbers.
Figure 1-42 • Read Timing Diagram

Asynchronous FIFO Read

Note: The plot shows the normal operation status.
Figure 1-43 • Asynchronous FIFO Read
Table 1-63 $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $\mathbf{2 . 7} \mathbf{V}$ for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
ERDH, THRDH	FRDH,Old EMPTY, FULL, EQTH, \& GETH valid hold time from RB \uparrow		0.5	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
ERDA	New EMPTY access from RB \uparrow	3.0^{1}		ns	
FRDA	FULL \downarrow access from RB \uparrow	3.0^{1}		ns	
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
RDCYC	Read cycle time	7.5		ns	
RDWRS	WB \uparrow, clearing EMPTY, setup to RB \downarrow	3.0^{2}		ns	Enabling the read operation
	RB high phase	3.0		ns	Inactive
RDH	RB low phase	3.0		ns	Active
RDL	New RPE access from RB \downarrow	9.5		ns	
RPRDA	Old RPE valid from RB \downarrow	4.5		ns	
RPRDH	EQTH or GETH access from RB \uparrow	Inhibiting the read operation			
THRDA					

Notes:

1. At fast cycles, $E R D A$ and $F R D A=M A X(7.5 \mathrm{~ns}-R D L), 3.0 \mathrm{~ns}$.
2. At fast cycles, RDWRS (for enabling read) $=$ MAX ($7.5 \mathrm{~ns}-W R \mathrm{~L}$), 3.0 ns .
3. All $-F$ speed grade devices are 20% slower than the standard numbers.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Asynchronous FIFO Write

Note: The plot shows the normal operation status.
Figure 1-44 • Asynchronous FIFO Write
Table 1-64 - $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $\mathbf{2 . 7} \mathrm{V}$ for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol tixxx	Description	Min.	Max.	Units	Notes
DWRH	DI hold from WB \uparrow	1.5		ns	
DWRS	DI setup to WB \uparrow	0.5		ns	PARGEN is inactive
DWRS	DI setup to WB \uparrow	2.5		ns	PARGEN is active
EWRH, FWRH, THWRH	Old EMPTY, FULL, EQTH, \& GETH valid hold time after WB \uparrow		0.5	ns	Empty/ful//thresh are invalid from the end of hold until the new access is complete
EWRA	EMPTY \downarrow access from WB \uparrow	3.0^{\uparrow}		ns	
FWRA	New FULL access from WB \uparrow	3.0^{1}		ns	
THWRA	EQTH or GETH access from WB \uparrow	4.5		ns	
WPDA	WPE access from DI	3.0		ns	WPE is invalid while PARGEN is active
WPDH	WPE hold from DI		1.0	ns	
WRCYC	Cycle time	7.5		ns	
WRRDS	RB \uparrow, clearing FULL, setup to WB \downarrow	3.0^{2}		ns	Enabling the write operation
	WB high phase	3.0	1.0		Inhibiting the write operation
WRH	WB low phase	3.0		ns	Inactive
WRL					

Notes:

1. At fast cycles, $E W R A, F W R A=M A X(7.5 \mathrm{~ns}-W R L), 3.0 \mathrm{~ns}$.
2. At fast cycles, WRRDS (for enabling write) $=M A X(7.5 \mathrm{~ns}-R D L), 3.0 \mathrm{~ns}$.
3. All -F speed grade devices are 20% slower than the standard numbers.
4. After FIFO reset, WRB needs an initial falling edge prior to any write actions.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.
Figure 1-45 • Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
Table 1-65 - $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathbf{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $\mathbf{2 . 7} \mathbf{V}$ for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from RCLKS \downarrow	3.0^{1}		ns	
FCBA	FULL \downarrow access from RCLKS \downarrow	3.0^{1}		ns	
ECBH, THCBH	Old EMPTY, FULL, EQTH, \& GETH valid hold time from RCLKS \downarrow		1.0	ns	Empty/ful//thresh are invalid from the end of hold until the new access is complete
OCA	New DO access from RCLKS \uparrow	7.5		ns	
OCH	Old DO valid from RCLKS \uparrow		3.0	ns	
RDCH	RDB hold from RCLKS \uparrow	0.5		ns	
RDCS	RDB setup to RCLKS \uparrow	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	9.5		ns	
RPCH	Old RPE valid from RCLKS \uparrow	4.5		ns	
HCBA	EQTH or GETH access from RCLKS \downarrow				

Notes:

1. At fast cycles, $E C B A$ and $F C B A=M A X(7.5 \mathrm{~ns}-C M H), 3.0 \mathrm{~ns}$.
2. All $-F$ speed grade devices are 20% slower than the standard numbers.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)

Note: The plot shows the normal operation status.
Figure 1-46 • Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
Table 1-66 - $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from RCLKS \downarrow	$3.0{ }^{1}$		ns	
FCBA	FULL \downarrow access from RCLKS \downarrow	3.0^{1}		ns	
$\begin{aligned} & \text { ECBH, FCBH, } \\ & \text { THCBH } \end{aligned}$	Old EMPTY, FULL, EQTH, \& GETH valid hold time from RCLKS \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
OCA	New DO access from RCLKS \uparrow	2.0		ns	
OCH	Old DO valid from RCLKS \uparrow		0.75	ns	
RDCH	RDB hold from RCLKS \uparrow	0.5		ns	
RDCS	RDB setup to RCLKS \uparrow	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	4.0		ns	
RPCH	Old RPE valid from RCLKS \uparrow		1.0	ns	
HCBA	EQTH or GETH access from RCLKS \downarrow	4.5		ns	

Notes:

1. At fast cycles, $E C B A$ and $F C B A=M A X(7.5 \mathrm{~ns}-C M S), 3.0 \mathrm{~ns}$.
2. All $-F$ speed grade devices are 20% slower than the standard numbers.

Synchronous FIFO Write

Note: The plot shows the normal operation status.

Figure 1-47 • Synchronous FIFO Write

Table 1-67 $\mathrm{T}_{\mathbf{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $\mathbf{1 1 0}^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $\mathbf{2 . 7} \mathbf{V}$ for Commercial/industrial
$\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
DCH	DI hold from WCLKS \uparrow	0.5		ns	
DCS	DI setup to WCLKS \uparrow	1.0		ns	
FCBA	New FULL access from WCLKS \downarrow	$3.0{ }^{1}$		ns	
ECBA	EMPTY \downarrow access from WCLKS \downarrow	3.0^{1}		ns	
$\begin{aligned} & \hline \text { ECBH, } \\ & \text { FCBH, } \\ & \text { HCBH } \end{aligned}$	Old EMPTY, FULL, EQTH, \& GETH valid hold time from WCLKS \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
HCBA	EQTH or GETH access from WCLKS \downarrow	4.5		ns	
WPCA	New WPE access from WCLKS \uparrow	3.0		ns	WPE is invalid, while PARGEN is active
WPCH	Old WPE valid from WCLKS \uparrow		0.5	ns	
WRCH, WBCH	WRB \& WBLKB hold from WCLKS \uparrow	0.5		ns	
WRCS, WBCS	WRB \& WBLKB setup to WCLKS \uparrow	1.0		ns	

Notes:

1. At fast cycles, $E C B A$ and $F C B A=M A X(7.5 \mathrm{~ns}-C M H), 3.0 \mathrm{~ns}$.
2. All -F speed grade devices are 20% slower than the standard numbers.

FIFO Reset

Notes:

1. During reset, either the enables (WRB and RBD) OR the clocks (WCLKS and RCKLS) must be low.
2. The plot shows the normal operation status.

Figure 1-48 • FIFO Reset
Table 1-68 - $\mathrm{T}_{\mathrm{J}}=\mathbf{0}^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathbf{V}_{\mathrm{DD}}=\mathbf{2 . 3} \mathbf{V}$ to $\mathbf{2 . 7} \mathbf{V}$ for Commercial/industrial $\mathrm{T}_{\mathrm{J}}=-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V for Military/MIL-STD-883

Symbol tixxx	Description	Min.	Max.	Units	Notes
CBRSH 1	WCLKS or RCLKS \uparrow hold from RESETB \uparrow	1.5		ns	Synchronous mode only
CBRSS 1	WCLKS or RCLKS \downarrow setup to RESETB \uparrow	1.5		ns	Synchronous mode only
ERSA	New EMPTY \uparrow access from RESETB \downarrow	3.0		ns	
FRSA	FULL \downarrow access from RESETB \downarrow	3.0		ns	
RSL	RESETB low phase	7.5		ns	
THRSA	EQTH or GETH access from RESETB \downarrow	4.5		ns	
WBRSH 1	WB \downarrow hold from RESETB \uparrow	1.5		ns	Asynchronous mode only
WBRSS 1	WB \uparrow setup to RESETB \uparrow	1.5		ns	Asynchronous mode only

Notes:

1. During rest, the enables (WRB and RBD) must be high OR the clocks (WCLKS and RCKLS) must be low.
2. All $-F$ speed grade devices are 20% slower than the standard numbers.

Pin Description

User Pins

I/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with standard LVTTL and LVCMOS specifications. Unused I/O pins are configured as inputs with pull-up resistors.

NC No Connect

To maintain compatibility with other Actel ProASICPLUS products, it is recommended that this pin not be connected to the circuitry on the board.

GL

Global Pin
Low skew input pin for clock or other global signals. This pin can be configured with an internal pull-up resistor. When it is not connected to the global network or the clock conditioning circuit, it can be configured and used as a normal I/O.

GLMX Global Multiplexing Pin

Low skew input pin for clock or other global signals. This pin can be used in one of two special ways (refer to Actel's Using ProASICPLUS Clock Conditioning Circuits).
When the external feedback option is selected for the PLL block, this pin is routed as the external feedback source to the clock conditioning circuit.
In applications where two different signals access the same global net at different times through the use of GLMXx and GLMXLx macros, this pin will be fixed as one of the source pins.
This pin can be configured with an internal pull-up resistor. When it is not connected to the global network or the clock conditioning circuit, it can be configured and used as any normal I/O. If not used, the GLMXx pin will be configured as an input with pull-up.

Dedicated Pins

GND Ground

Common ground supply voltage.

VDD	Logic Array Power Supply Pin
2.5 V supply voltage.	
$\mathbf{V}_{\text {DDP }}$	
2.5 V or 3.3 V supply voltage.	

2.5 V supply voltage.

V DDP I/O Pad Power Supply Pin
2.5 V or 3.3 V supply voltage.

TMS Test Mode Select
The TMS pin controls the use of boundary-scan circuitry. This pin has an internal pull-up resistor.

TCK

Test Clock

Clock input pin for boundary scan (maximum 10 MHz). Actel recommends adding a nominal $20 \mathrm{k} \Omega$ pull-up resistor to this pin.

TDI Test Data In

Serial input for boundary scan. A dedicated pull-up resistor is included to pull this pin high when not being driven.

TDO Test Data Out

Serial output for boundary scan. Actel recommends adding a nominal $20 \mathrm{k} \Omega$ pull-up resistor to this pin.

TRST
Test Reset Input
Asynchronous, active-low input pin for resetting boundary-scan circuitry. This pin has an internal pull-up resistor. For more information, please refer to Power-up Behavior of ProASICPLUS Devices application note.

Special Function Pins

RCK Running Clock

A free running clock is needed during programming if the programmer cannot guarantee that TCK will be uninterrupted. If not used, this pin has an internal pullup and can be left floating.

NPECL

User Negative Input
Provides high speed clock or data signals to the PLL block. If unused, leave the pin unconnected.

PPECL

User Positive Input

Provides high speed clock or data signals to the PLL block. If unused, leave the pin unconnected.
AVDD
PLL Power Supply
Analog V_{DD} should be V_{DD} (core voltage) 2.5 V (nominal) and be decoupled from GND with suitable decoupling capacitors to reduce noise. For more information, refer to Actel's Using ProASICPLUS Clock Conditioning Circuits application note. If the clock conditioning circuitry is not used in a design, AVDD can either be left floating or tied to 2.5 V .

AGND

PLL Power Ground
The analog ground can be connected to the system ground. For more information, refer to Actel's Using ProASICPLUS Clock Conditioning Circuits application note. If the PLLs or clock conditioning circuitry are not used in a design, AGND should be tied to GND.

$\mathbf{V P P}_{\text {PP }} \quad$ Programming Supply Pin

This pin may be connected to any voltage between GND and 16.5 V during normal operation, or it can be left unconnected. ${ }^{2}$ For information on using this pin during programming, see the In-System Programming ProASICPLUS Devices application note. Actel recommends floating the pin or connecting it to $V_{\text {DDP }}$

$\mathbf{V P N}_{\text {PN }} \quad$ Programming Supply Pin

This pin may be connected to any voltage between 0.5 V and -13.8 V during normal operation, or it can be left unconnected. ${ }^{3}$ For information on using this pin during programming, see the In-System Programming ProASICPLUS Devices application note. Actel recommends floating the pin or connecting it to GND.

Recommended Design Practice for $\mathrm{V}_{\mathrm{PN}} / \mathrm{V}_{\mathrm{PP}}$

ProASIC ${ }^{\text {PLUS }}$ Devices - APA450, APA600, APA750, APA1000

Bypass capacitors are required from $V_{P P}$ to $G N D$ and $V_{P N}$ to GND for all ProASICPLUS devices during programming. During the erase cycle, ProASICPLUS devices may have current surges on the $\mathrm{V}_{\text {PP }}$ and V_{PN} power supplies. The only way to maintain the integrity of the power distribution to the ProASICPLUS device during these current surges is to counteract the inductance of the
finite length conductors that distribute the power to the device. This can be accomplished by providing sufficient bypass capacitance between the $\mathrm{V}_{P P}$ and $\mathrm{V}_{P N}$ pins and GND (using the shortest paths possible). Without sufficient bypass capacitance to counteract the inductance, the V_{PP} and V_{PN} pins may incur a voltage spike beyond the voltage that the device can withstand. This issue applies to all programming configurations.
The solution prevents spikes from damaging the ProASICPLUS devices. Bypass capacitors are required for the V_{PP} and V_{PN} pads. Use a $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitor with a 25 V or greater rating. To filter lowfrequency noise (decoupling), use a $4.7 \mu \mathrm{~F}$ (low ESR, <1 $<\Omega$, tantalum, 25 V or greater rating) capacitor. The capacitors should be located as close to the device pins as possible (within 2.5 cm is desirable). The smaller, highfrequency capacitor should be placed closer to the device pins than the larger low-frequency capacitor. The same dual-capacitor circuit should be used on both the $V_{P P}$ and $V_{\text {PN }}$ pins (Figure 1-49).

ProASICPLUS Devices - APA075, APA150, APA300

These devices do not require bypass capacitors on the V_{PP} and $V_{P N}$ pins as long as the total combined distance of the programming cable and the trace length on the board is less than or equal to 30 inches. Note: For trace lengths greater than 30 inches, use the bypass capacitor recommendations in the previous section.

[^1]2. There is a nominal $40 \mathrm{k} \Omega$ pull-up resistor on $V_{P P}$
3. There is a nominal $40 \mathrm{k} \Omega$ pull-down resistor on $\vee_{P N}$.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Package Pin Assignments

100-Pin TQFP

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

100-Pin TQFP			100-Pin TQFP			100-Pin TQFP		
Pin Number	APA075 Function	APA150 Function	Pin Number	APA075 Function	APA150 Function	$\begin{gathered} \hline \text { Pin } \\ \text { Number } \end{gathered}$	APA075 Function	APA150 Function
1	GND	GND	36	//O	I/O	71	I/O	//0
2	I/O	//O	37	$V_{\text {DD }}$	$V_{\text {DD }}$	72	//0	//0
3	1/0	//0	38	GND	GND	73	//O	//O
4	I/O	//	39	$V_{\text {DDP }}$	$V_{\text {DDP }}$	74	//O	//O
5	I/O	//O	40	GND	GND	75	GND	GND
6	I/O	//O	41	I/O	I/O	76	$V_{\text {DDP }}$	$V_{\text {DDP }}$
7	I/O	I/O	42	I/O	I/O	77	I/O	I/O
8	I/O	I/O	43	I/O	//O	78	I/O	I/O
9	GND	GND	44	//O	//O	79	//O	//O
10	I/O / GLMX1	I/O / GLMX1	45	//O	//O	80	I/O	//O
11	//O / GL1	I/O / GL1	46	//O	//O	81	//0	//O
12	AGND	AGND	47	TCK	TCK	82	I/O	I/O
13	NPECL1	NPECL1	48	TDI	TDI	83	I/O	I/O
14	AVDD	AVDD	49	TMS	TMS	84	I/O	I/O
15	PPECL1 / Input	PPECL1 / Input	50	$V_{\text {DDP }}$	$V_{\text {DDP }}$	85	//0	//O
16	I/O / GL2	//O / GL2	51	GND	GND	86	GND	GND
17	$V_{D D}$	$V_{D D}$	52	$V_{\text {PP }}$	$\mathrm{V}_{\text {PP }}$	87	$V_{\text {DDP }}$	$V_{\text {DDP }}$
18	I/O	//O	53	$\mathrm{V}_{\text {PN }}$	$\mathrm{V}_{\text {PN }}$	88	GND	GND
19	//O	//O	54	TDO	TDO	89	$V_{D D}$	$V_{D D}$
20	//O	//0	55	TRST	TRST	90	I/O	//O
21	//O	//O	56	RCK	RCK	91	//0	//O
22	1/0	//O	57	I/O	I/O	92	I/O	I/O
23	I/O	//O	58	//O	//O	93	I/O	I/O
24	I/O	I/O	59	I/O	I/O	94	I/O	I/O
25	GND	GND	60	I/O / GL3	I/O / GL3	95	I/O	I/O
26	$V_{\text {DDP }}$	$V_{\text {DDP }}$	61	PPECL2 / Input	PPECL2 / Input	96	//O	//O
27	//O	//	62	AVDD	AVDD	97	//0	//O
28	I/O	I/O	63	NPECL2	NPECL2	98	I/O	I/O
29	//O	//O	64	AGND	AGND	99	//0	//O
30	1/0	//0	65	I/O / GL4	I/O / GL4	100	$V_{\text {DDP }}$	$V_{\text {DDP }}$
31	//0	//O	66	//O / GLMX2	I/O / GLMX2			
32	I/O	//O	67	GND	GND			
33	//O	//O	68	$V_{\text {D }}$	$V_{\text {DD }}$			
34	I/O	//O	69	I/O	I/O			
35	I/O	//O	70	I/O	I/O			

144-Pin TQFP

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

144-Pin TQFP		144-Pin TQFP		144-Pin TQFP		144-Pin TQFP	
Pin Number	APA075 Function	Pin Number	APA075 Function	Pin Number	APA075 Function	Pin Number	APA075 Function
1	I/O	37	I/O	73	$V_{\text {PP }}$	109	I/O
2	I/O	38	1/O	74	$V_{\text {PN }}$	110	1/O
3	1/O	39	1/0	75	TDO	111	1/0
4	I/O	40	I/O	76	TRST	112	1/O
5	I/O	41	I/O	77	RCK	113	1/0
6	I/O	42	1/0	78	I/O	114	1/0
7	1/O	43	1/0	79	1/O	115	1/0
8	I/O	44	I/O	80	I/O	116	I/O
9	$V_{\text {DD }}$	45	$V_{\text {DD }}$	81	$V_{\text {DDP }}$	117	$V_{\text {DDP }}$
10	GND	46	GND	82	GND	118	GND
11	$V_{\text {DDP }}$	47	$V_{\text {DDP }}$	83	I/O	119	$V_{\text {DD }}$
12	I/O	48	I/O	84	I/O	120	I/O
13	I/O	49	I/O	85	1/O	121	I/O
14	I/O	50	I/O	86	I/O	122	I/O
15	I/O / GLMX1	51	I/O	87	1/O	123	I/O
16	I/O / GL1	52	I/O	88	I/O / GL3	124	I/O
17	AGND	53	I/O	89	PPECL2 /	125	I/O
18	NPECL1	54	I/O		Input	126	1/0
19	AVDD	55	I/O	90	AVDD	127	I/O
20	PPECL1 /	56	I/O	91	NPECL2	128	I/O
		57	I/O	92	AGND	129	I/O
21	I/O / GL2	58	I/O	93	I/O / GL4	130	I/O
22	I/O	59	I/O	94	I/O / GLMX2	131	I/O
23	I/O	60	I/O	95	I/O	132	I/O
24	I/O	61	I/O	96	I/O	133	I/O
25	I/O	62	$V_{\text {DD }}$	97	1/O	134	$V_{\text {DDP }}$
26	I/O	63	GND	98	$V_{\text {DDP }}$	135	GND
27	GND	64	$V_{\text {DDP }}$	99	GND	136	$V_{D D}$
28	$V_{\text {DDP }}$	65	I/O	100	$V_{\text {DD }}$	137	I/O
29	I/O	66	I/O	101	I/O	138	I/O
30	I/O	67	I/O	102	I/O	139	I/O
31	I/O	68	I/O	103	I/O	140	I/O
32	I/O	69	TCK	104	I/O	141	1/0
33	I/O	70	TDI	105	I/O	142	I/O
34	I/O	71	TMS	106	I/O	143	I/O
35	I/O	72	NC	107	I/O	144	I/O
36	I/O			108	1/0		

208-Pin PQFP

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

208-Pin PQFP							
Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
1	GND						
2	I/O						
3	I/O						
4	I/O	1/0	1/0	I/O	1/O	I/O	I/O
5	I/O	I/O	I/O	I/O	1/O	I/O	I/O
6	I/O						
7	I/O	I/O	1/0	1/0	1/O	I/O	I/O
8	1/0	1/0	I/O	1/0	1/O	1/0	I/O
9	1/0	1/0	1/0	1/0	1/O	1/0	1/0
10	1/0	1/0	1/0	I/O	1/O	1/0	1/0
11	I/O	1/0	1/0	1/0	I/O	I/O	1/0
12	1/0	1/0	1/0	I/O	1/O	1/0	1/0
13	I/O	I/O	I/O	I/O	1/O	I/O	I/O
14	I/O	I/O	1/0	I/O	I/O	I/O	I/O
15	I/O	I/O	1/0	I/O	I/O	I/O	I/O
16	$V_{\text {DD }}$						
17	GND						
18	1/0	I/O	I/O	I/O	I/O	I/O	1/0
19	1/0	1/0	1/0	1/0	1/0	1/0	1/0
20	I/O	I/O	1/0	I/O	1/0	I/O	I/O
21	I/O						
22	$V_{\text {DDP }}$						
23	I/O / GLMX1						
24	I/O / GL2						
25	AGND						
26	NPECL1						
27	AVDD						
28	PPECL1 / Input						
29	GND						
30	I/O / GL1						
31	I/O						
32	I/O						
33	I/O	1/0	I/O	I/O	I/O	I/O	I/O
34	I/O						
35	I/O	1/O	I/O	I/O	I/O	I/O	1/0

208-Pin PQFP							
Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA 1000 Function
36	$V_{\text {DD }}$						
37	I/O						
38	I/O	1/O	1/O	1/0	1/0	1/0	1/O
39	1/0	1/0	1/0	1/0	1/0	1/0	1/0
40	$V_{\text {DDP }}$						
41	GND						
42	I/O						
43	1/O	1/O	I/O	I/O	I/O	I/O	I/O
44	1/O	I/O	I/O	I/O	1/0	I/O	I/O
45	1/O	1/O	I/O	I/O	I/O	I/O	I/O
46	1/O	1/O	I/O	I/O	1/0	I/O	1/O
47	1/0	1/O	1/O	I/O	1/0	1/0	I/O
48	I/O						
49	1/0	I/O	1/O	I/O	I/O	I/O	I/O
50	1/O	I/O	I/O	I/O	I/O	I/O	I/O
51	1/O	I/O	I/O	I/O	1/O	I/O	I/O
52	GND						
53	$V_{\text {DDP }}$						
54	I/O						
55	1/0	1/0	1/0	I/O	1/0	I/O	I/O
56	I/O	1/O	1/O	I/O	1/0	1/0	1/0
57	I/O	1/0	1/0	1/0	1/0	1/0	1/0
58	1/0	I/O	1/O	1/0	1/0	I/O	1/0
59	1/O	I/O	I/O	I/O	1/O	I/O	I/O
60	I/O						
61	1/O	I/O	I/O	I/O	1/O	I/O	I/O
62	I/O						
63	1/0	1/0	1/O	I/O	I/O	I/O	I/O
64	I/O						
65	GND						
66	I/O	I/O	I/O	1/O	I/O	I/O	1/O
67	I/O	I/O	1/0	I/O	1/O	I/O	I/O
68	1/O	I/O	1/O	I/O	1/O	I/O	I/O
69	I/O	I/O	1/O	I/O	I/O	I/O	I/O
70	1/0	1/0	1/O	I/O	I/O	I/O	I/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

208-Pin PQFP							
Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
71	$V_{\text {DD }}$						
72	$V_{\text {DDP }}$						
73	I/O						
74	I/O						
75	I/O						
76	I/O						
77	I/O	1/0	1/0	1/O	I/O	I/O	1/0
78	I/O						
79	1/0	1/0	1/0	I/O	I/O	I/O	I/O
80	I/O						
81	GND						
82	1/O	1/0	1/O	1/0	I/O	1/0	I/O
83	1/0	1/0	1/0	1/0	1/O	1/0	1/0
84	I/O	1/0	1/O	1/O	1/O	1/0	1/0
85	I/O	I/O	I/O	I/O	1/O	I/O	1/0
86	I/O						
87	I/O	I/O	I/O	I/O	I/O	I/O	1/O
88	$V_{\text {DD }}$						
89	$V_{\text {DDP }}$						
90	I/O						
91	1/0	1/0	1/0	1/0	1/O	1/0	1/0
92	I/O	I/O	I/O	I/O	1/0	I/O	1/0
93	I/O	I/O	I/O	I/O	1/O	I/O	1/0
94	1/0	1/0	1/0	I/O	1/0	1/0	I/O
95	I/O						
96	I/O						
97	GND						
98	I/O						
99	I/O						
100	I/O						
101	TCK						
102	TDI						
103	TMS						
104	$V_{\text {DDP }}$						
105	GND						

208-Pin PQFP							
Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
106	$V_{\text {PP }}$						
107	$V_{P N}$	$V_{\text {PN }}$	$V_{\text {PN }}$	$V_{\text {PN }}$	$V_{P N}$	$V_{\text {PN }}$	$V_{\text {PN }}$
108	TDO						
109	TRST						
110	RCK						
111	I/O						
112	1/0	1/0	I/O	1/0	1/0	1/0	1/0
113	I/O	I/O	I/O	I/O	1/O	1/0	1/O
114	I/O	1/O	I/O	I/O	I/O	I/O	1/O
115	I/O	I/O	I/O	I/O	I/O	I/O	1/0
116	I/O	1/0	I/O	I/O	1/0	I/O	1/0
117	I/O	I/O	I/O	I/O	I/O	1/0	1/0
118	I/O	I/O	I/O	I/O	I/O	I/O	1/0
119	1/0	1/0	I/O	1/0	I/O	1/0	I/O
120	I/O	I/O	I/O	I/O	1/0	I/O	1/0
121	I/O	I/O	I/O	I/O	1/0	I/O	I/O
122	GND						
123	$V_{\text {DDP }}$						
124	I/O						
125	I/O	1/0	I/O	I/O	1/O	I/O	1/O
126	$V_{\text {DD }}$						
127	I/O						
128	I/O / GL3						
129	PPECL2 / Input						
130	GND						
131	AVDD						
132	NPECL2						
133	AGND						
134	I/O / GL4						
135	I/O / GLMX2						
136	I/O	I/O	I/O	I/O	1/O	1/O	1/O
137	I/O						
138	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
139	I/O						
140	I/O	I/O	I/O	I/O	1/0	1/0	1/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

208-Pin PQFP							
Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
141	GND						
142	$V_{\text {DD }}$						
143	I/O						
144	1/0	1/0	1/0	I/O	1/0	1/0	1/0
145	1/0	1/0	1/0	1/0	1/0	1/0	1/0
146	I/O	1/0	1/0	1/0	1/0	1/0	1/0
147	I/O	1/0	1/0	1/0	1/0	I/O	I/O
148	I/O	1/0	I/O	1/O	I/O	1/O	1/O
149	I/O						
150	I/O	I/O	I/O	1/O	I/O	I/O	1/0
151	I/O	1/0	1/0	1/0	1/0	I/O	1/0
152	I/O	1/0	I/O	1/O	I/O	1/0	1/0
153	I/O	1/0	I/O	1/0	I/O	1/0	1/0
154	1/0	1/0	1/0	1/0	1/0	1/0	I/O
155	I/O						
156	GND						
157	$V_{\text {DDP }}$						
158	I/O						
159	I/O	I/O	I/O	I/O	I/O	1/0	1/0
160	I/O	I/O	I/O	I/O	I/O	I/O	1/O
161	I/O	I/O	I/O	I/O	I/O	I/O	1/O
162	GND						
163	I/O						
164	I/O	1/0	1/0	1/0	1/0	1/O	1/O
165	1/O	I/O	1/0	1/0	I/O	1/0	1/0
166	1/O	I/O	I/O	1/O	I/O	I/O	1/0
167	I/O	I/O	I/O	I/O	I/O	1/O	1/0
168	I/O	I/O	I/O	I/O	I/O	1/O	I/O
169	I/O	1/O	1/O	1/O	1/O	1/O	1/O
170	$V_{\text {DDP }}$						
171	$V_{\text {DD }}$						
172	I/O						
173	I/O	1/0	1/0	1/O	I/O	I/O	1/0
174	I/O	I/O	I/O	1/O	I/O	1/0	1/0
175	I/O	I/O	I/O	I/O	I/O	1/O	1/0

208-Pin PQFP							
Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
176	I/O						
177	I/O						
178	GND						
179	I/O						
180	I/O	I/O	I/O	I/O	I/O	I/O	1/O
181	I/O						
182	I/O	1/0	1/0	1/0	1/0	1/0	1/0
183	1/0	1/0	I/O	1/0	1/0	1/0	1/0
184	I/O	1/0	1/0	1/0	1/0	1/0	1/0
185	I/O	1/O	1/O	1/0	1/0	1/0	1/0
186	$V_{\text {DDP }}$						
187	$V_{\text {DD }}$						
188	I/O						
189	I/O	I/O	I/O	I/O	1/0	1/0	1/0
190	I/O	I/O	I/O	I/O	1/0	1/0	1/O
191	I/O	1/0	I/O	I/O	1/0	I/O	1/0
192	I/O	I/O	I/O	1/O	I/O	I/O	I/O
193	1/0	1/0	I/O	1/0	1/0	1/0	1/0
194	I/O	I/O	I/O	I/O	1/0	I/O	I/O
195	GND						
196	I/O						
197	I/O						
198	I/O	I/O	I/O	I/O	1/0	I/O	1/0
199	1/O	I/O	I/O	I/O	I/O	I/O	I/O
200	I/O						
201	I/O						
202	I/O						
203	1/0	1/0	1/0	1/0	1/0	1/0	1/0
204	I/O						
205	I/O	I/O	I/O	1/0	I/O	I/O	I/O
206	I/O						
207	1/O	1/0	I/O	1/0	1/0	1/0	I/O
208	$V_{\text {DDP }}$						

\qquad Actel

208-Pin CQFP

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

208-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA 1000 Function
1	GND	GND	GND
2	I/O	I/O	I/O
3	1/0	I/O	I/O
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	I/O	I/O	I/O
8	I/O	I/O	I/O
9	I/O	I/O	I/O
10	I/O	I/O	I/O
11	I/O	I/O	I/O
12	I/O	I/O	I/O
13	I/O	I/O	I/O
14	I/O	I/O	I/O
15	I/O	I/O	I/O
16	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
17	GND	GND	GND
18	I/O	I/O	I/O
19	I/O	I/O	I/O
20	I/O	I/O	I/O
21	I/O	I/O	I/O
22	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
23	I/O / GLMX1	I/O / GLMX1	I/O / GLMX1
24	I/O / GL2	I/O / GL2	I/O / GL2
25	AGND	AGND	AGND
26	NPECL1	NPECL1	NPECL1
27	AVDD	AVDD	AVDD
28	PPECL1 / Input	PPECL1 / Input	PPECL1 / Input
29	GND	GND	GND
30	I/O / GL1	I/O / GL1	I/O / GL1
31	I/O	I/O	I/O
32	I/O	I/O	1/0
33	1/0	1/0	1/0
34	I/O	I/O	I/O
35	I/O	I/O	1/O

208-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
36	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
37	I/O	I/O	I/O
38	I/O	I/O	I/O
39	I/O	I/O	I/O
40	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
41	GND	GND	GND
42	I/O	I/O	I/O
43	I/O	I/O	I/O
44	I/O	I/O	I/O
45	I/O	I/O	I/O
46	I/O	I/O	I/O
47	I/O	I/O	I/O
48	I/O	I/O	I/O
49	I/O	I/O	I/O
50	I/O	I/O	I/O
51	I/O	I/O	I/O
52	GND	GND	GND
53	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
54	I/O	I/O	I/O
55	I/O	I/O	I/O
56	I/O	1/O	I/O
57	I/O	I/O	I/O
58	I/O	I/O	I/O
59	I/O	1/O	I/O
60	I/O	1/O	I/O
61	I/O	I/O	I/O
62	I/O	1/O	I/O
63	I/O	I/O	1/O
64	I/O	1/O	1/O
65	GND	GND	GND
66	I/O	I/O	I/O
67	I/O	1/0	I/O
68	I/O	I/O	I/O
69	I/O	I/O	I/O
70	I/O	I/O	1/0

208-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
71	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
72	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
73	I/O	I/O	I/O
74	I/O	I/O	I/O
75	I/O	I/O	I/O
76	I/O	I/O	I/O
77	I/O	I/O	I/O
78	I/O	I/O	I/O
79	I/O	I/O	I/O
80	I/O	I/O	I/O
81	GND	GND	GND
82	I/O	I/O	I/O
83	I/O	I/O	I/O
84	I/O	I/O	I/O
85	I/O	I/O	I/O
86	I/O	I/O	I/O
87	I/O	I/O	I/O
88	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
89	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
90	I/O	I/O	I/O
91	I/O	I/O	I/O
92	I/O	I/O	I/O
93	I/O	I/O	I/O
94	1/0	1/O	I/O
95	I/O	I/O	I/O
96	I/O	I/O	I/O
97	GND	GND	GND
98	I/O	I/O	I/O
99	I/O	I/O	I/O
100	I/O	I/O	I/O
101	TCK	TCK	TCK
102	TDI	TDI	TDI
103	TMS	TMS	TMS
104	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
105	GND	GND	GND

208-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA 1000 Function
106	$V_{\text {PP }}$	$V_{\text {PP }}$	$V_{\text {PP }}$
107	$V_{\text {PN }}$	$V_{\text {PN }}$	$V_{P N}$
108	TDO	TDO	TDO
109	TRST	TRST	TRST
110	RCK	RCK	RCK
111	I/O	I/O	I/O
112	I/O	1/0	1/0
113	I/O	I/O	I/O
114	I/O	I/O	I/O
115	I/O	1/0	I/O
116	I/O	1/0	1/0
117	I/O	1/O	1/0
118	I/O	I/O	1/0
119	I/O	1/0	1/0
120	I/O	1/O	1/0
121	I/O	I/O	I/O
122	GND	GND	GND
123	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
124	I/O	I/O	I/O
125	I/O	1/0	1/O
126	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
127	I/O	I/O	I/O
128	I/O / GL3	I/O / GL3	I/O / GL3
129	PPECL2 / Input	PPECL2 / Input	PPECL2 / Input
130	GND	GND	GND
131	AVDD	AVDD	AVDD
132	NPECL2	NPECL2	NPECL2
133	AGND	AGND	AGND
134	I/O / GL4	I/O / GL4	I/O / GL4
135	I/O / GLMX2	I/O / GLMX2	I/O / GLMX2
136	I/O	I/O	I/O
137	I/O	1/O	1/O
138	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
139	I/O	I/O	I/O
140	I/O	I/O	1/0

208-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
141	GND	GND	GND
142	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
143	I/O	I/O	I/O
144	I/O	I/O	I/O
145	I/O	I/O	I/O
146	I/O	I/O	I/O
147	I/O	I/O	I/O
148	I/O	I/O	I/O
149	I/O	I/O	1/0
150	I/O	I/O	I/O
151	I/O	I/O	I/O
152	I/O	I/O	1/0
153	I/O	I/O	I/O
154	I/O	I/O	I/O
155	I/O	I/O	I/O
156	GND]GND	GND
157	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
158	I/O	I/O	I/O
159	I/O	I/O	I/O
160	I/O	I/O	I/O
161	I/O	I/O	I/O
162	GND	GND	GND
163	I/O	I/O	I/O
164	1/O	1/O	1/O
165	1/0	I/O	1/0
166	I/O	I/O	1/0
167	I/O	I/O	1/0
168	I/O	I/O	1/0
169	1/0	1/O	1/0
170	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
171	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
172	I/O	I/O	I/O
173	I/O	I/O	I/O
174	1/0	1/0	1/0
175	I/O	I/O	1/0

208-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA 1000 Function
176	I/O	I/O	I/O
177	I/O	I/O	I/O
178	GND	GND	GND
179	I/O	I/O	I/O
180	1/O	I/O	I/O
181	I/O	I/O	I/O
182	I/O	I/O	I/O
183	1/O	I/O	I/O
184	I/O	I/O	I/O
185	I/O	I/O	I/O
186	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
187	$V_{D D}$	$V_{\text {DD }}$	$V_{\text {DD }}$
188	I/O	I/O	I/O
189	1/0	I/O	I/O
190	I/O	I/O	I/O
191	I/O	I/O	I/O
192	I/O	I/O	I/O
193	I/O	1/O	I/O
194	I/O	I/O	I/O
195	GND	GND	GND
196	I/O	I/O	I/O
197	I/O	I/O	I/O
198	I/O	I/O	I/O
199	I/O	I/O	I/O
200	I/O	I/O	I/O
201	I/O	I/O	I/O
202	I/O	I/O	I/O
203	I/O	I/O	I/O
204	I/O	I/O	I/O
205	I/O	I/O	I/O
206	I/O	I/O	I/O
207	I/O	I/O	I/O
208	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$

\qquad

352-Pin CQFP

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
1	I/O	I/O	I/O
2	I/O	I/O	I/O
3	I/O	I/O	I/O
4	I/O	I/O	I/O
5	I/O	I/O	I/O
6	I/O	I/O	I/O
7	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
8	GND	GND	GND
9	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
10	I/O	I/O	I/O
11	I/O	I/O	I/O
12	I/O	I/O	I/O
13	I/O	I/O	I/O
14	I/O	I/O	I/O
15	I/O	I/O	I/O
16	I/O	I/O	I/O
17	I/O	I/O	I/O
18	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
19	GND	GND	GND
20	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
21	I/O	I/O	I/O
22	I/O	I/O	I/O
23	I/O	I/O	I/O
24	I/O	I/O	I/O
25	I/O	I/O	I/O
26	I/O	I/O	I/O
27	I/O	I/O	I/O
28	I/O	I/O	I/O
29	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
30	GND	GND	GND
31	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
32	I/O	I/O	I/O
33	I/O	1/O	I/O
34	I/O	I/O	I/O
35	I/O	I/O	I/O
36	I/O	1/O	I/O
37	I/O	I/O	I/O

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA 1000 Function
38	I/O / GLMX1	I/O / GLMX1	I/O / GLMX1
39	I/O / GL2	I/O / GL2	I/O / GL2
40	AGND	AGND	AGND
41	AVDD	AVDD	AVDD
42	NPECL1	NPECL1	NPECL1
43	PPECL1 / Input	PPECL1 / Input	PPECL1 / Input
44	I/O / GL1	I/O / GL1	I/O / GL1
45	I/O	I/O	I/O
46	I/O	I/O	I/O
47	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
48	GND	GND	GND
49	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
50	I/O	I/O	I/O
51	I/O	I/O	I/O
52	I/O	I/O	I/O
53	I/O	I/O	I/O
54	I/O	I/O	I/O
55	I/O	I/O	I/O
56	I/O	I/O	I/O
57	I/O	I/O	I/O
58	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$
59	GND	GND	GND
60	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
61	I/O	I/O	I/O
62	I/O	I/O	I/O
63	I/O	I/O	I/O
64	I/O	I/O	I/O
65	I/O	I/O	I/O
66	I/O	I/O	I/O
67	I/O	I/O	I/O
68	I/O	I/O	I/O
69	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
70	GND	GND	GND
71	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
72	I/O	I/O	I/O
73	I/O	I/O	I/O
74	I/O	I/O	I/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
75	I/O	I/O	I/O
76	I/O	I/O	I/O
77	I/O	I/O	I/O
78	I/O	I/O	I/O
79	I/O	I/O	I/O
80	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
81	GND	GND	GND
82	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
83	I/O	I/O	I/O
84	I/O	I/O	I/O
85	I/O	I/O	I/O
86	I/O	I/O	I/O
87	I/O	I/O	I/O
88	I/O	I/O	I/O
89	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
90	GND	GND	GND
91	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
92	I/O	I/O	I/O
93	I/O	1/O	I/O
94	I/O	I/O	I/O
95	I/O	I/O	I/O
96	I/O	I/O	I/O
97	I/O	I/O	I/O
98	I/O	I/O	I/O
99	I/O	I/O	I/O
100	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
101	GND	GND	GND
102	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
103	I/O	I/O	I/O
104	I/O	I/O	I/O
105	I/O	I/O	I/O
106	I/O	I/O	I/O
107	I/O	1/O	1/O
108	I/O	1/O	I/O
109	I/O	1/0	I/O
110	I/O	I/O	I/O
111	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
112	GND	GND	GND
113	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
114	I/O	I/O	I/O
115	I/O	I/O	I/O
116	I/O	I/O	I/O
117	I/O	I/O	I/O
118	I/O	I/O	I/O
119	I/O	I/O	I/O
120	I/O	1/O	I/O
121	I/O	I/O	I/O
122	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
123	GND	GND	GND
124	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
125	I/O	I/O	I/O
126	I/O	I/O	I/O
127	I/O	I/O	I/O
128	I/O	1/O	I/O
129	I/O	I/O	I/O
130	I/O	I/O	I/O
131	I/O	I/O	I/O
132	I/O	I/O	I/O
133	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
134	GND	GND	GND
135	$V_{D D}$	$V_{D D}$	$V_{D D}$
136	I/O	I/O	I/O
137	I/O	I/O	I/O
138	I/O	I/O	I/O
139	I/O	I/O	I/O
140	I/O	I/O	I/O
141	I/O	I/O	I/O
142	I/O	I/O	1/O
143	I/O	I/O	I/O
144	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
145	GND	GND	GND
146	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$
147	I/O	I/O	I/O
148	I/O	I/O	I/O

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
149	I/O	I/O	I/O
150	I/O	I/O	I/O
151	I/O	I/O	I/O
152	I/O	I/O	I/O
153	I/O	I/O	I/O
154	I/O	I/O	I/O
155	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
156	GND	GND	GND
157	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
158	I/O	I/O	I/O
159	I/O	I/O	I/O
160	I/O	I/O	I/O
161	I/O	I/O	I/O
162	I/O	I/O	I/O
163	I/O	I/O	I/O
164	I/O	I/O	I/O
165	I/O	I/O	I/O
166	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
167	GND	GND	GND
168	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
169	I/O	I/O	I/O
170	I/O	I/O	I/O
171	I/O	I/O	I/O
172	I/O	I/O	I/O
173	TCK	TCK	TCK
174	TDI	TDI	TDI
175	TMS	TMS	TMS
176	I/O	I/O	I/O
177	VPP	VPP	VPP
178	VPN	VPN	VPN
179	TDO	TDO	TDO
180	TRST	TRST	TRST
181	RCK	RCK	RCK
182	I/O	I/O	I/O
183	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
184	GND	GND	GND
185	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
186	I/O	I/O	I/O
187	I/O	I/O	I/O
188	1/O	1/0	I/O
189	I/O	I/O	I/O
190	I/O	I/O	I/O
191	I/O	I/O	I/O
192	I/O	I/O	I/O
193	I/O	I/O	I/O
194	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
195	GND	GND	GND
196	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
197	I/O	I/O	I/O
198	I/O	I/O	I/O
199	I/O	I/O	I/O
200	I/O	I/O	I/O
201	I/O	I/O	I/O
202	I/O	I/O	I/O
203	I/O	I/O	I/O
204	I/O	I/O	I/O
205	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
206	GND	GND	GND
207	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
208	I/O	I/O	I/O
209	I/O	I/O	I/O
210	I/O	I/O	I/O
211	I/O	I/O	I/O
212	I/O	I/O	I/O
213	I/O	I/O	1/0
214	I/O	I/O	I/O
215	I/O	I/O	I/O
216	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
217	GND	GND	GND
218	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$
219	I/O	I/O	I/O
220	I/O	I/O	I/O
221	I/O / GL3	I/O / GL3	I/O / GL3
222	PPECL2 / Input	PPECL2 / Input	PPECL2 / Input

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
223	NPECL2	NPECL2	NPECL2
224	AVDD	AVDD	AVDD
225	AGND	AGND	AGND
226	I/O / GL4	I/O / GL4	I/O / GL4
227	I/O / GLMX2	I/O / GLMX2	I/O / GLMX2
228	I/O	I/O	I/O
229	I/O	1/0	I/O
230	I/O	I/O	I/O
231	I/O	1/O	I/O
232	I/O	1/0	I/O
233	1/0	1/0	I/O
234	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
235	GND	GND	GND
236	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
237	I/O	I/O	I/O
238	I/O	I/O	I/O
239	I/O	I/O	I/O
240	I/O	1/0	I/O
241	I/O	1/0	1/0
242	I/O	1/0	1/O
243	I/O	I/O	I/O
244	1/0	1/0	1/O
245	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
246	GND	GND	GND
247	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
248	I/O	I/O	I/O
249	I/O	1/0	1/O
250	I/O	I/O	I/O
251	I/O	1/0	I/O
252	I/O	1/0	1/O
253	I/O	I/O	I/O
254	I/O	I/O	I/O
255	1/0	1/0	1/O
256	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
257	GND	GND	GND
258	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
259	I/O	I/O	I/O

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA 1000 Function
260	I/O	I/O	I/O
261	I/O	I/O	I/O
262	I/O	I/O	I/O
263	I/O	I/O	I/O
264	I/O	I/O	I/O
265	I/O	I/O	I/O
266	I/O	I/O	I/O
267	I/O	I/O	I/O
268	I/O	I/O	I/O
269	I/O	I/O	I/O
270	I/O	I/O	I/O
271	I/O	I/O	I/O
272	1/O	I/O	I/O
273	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
274	GND	GND	GND
275	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
276	I/O	I/O	I/O
277	I/O	I/O	I/O
278	I/O	I/O	I/O
279	I/O	I/O	I/O
280	I/O	I/O	I/O
281	1/O	1/O	I/O
282	I/O	I/O	I/O
283	I/O	I/O	I/O
284	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
285	GND	GND	GND
286	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
287	I/O	I/O	I/O
288	I/O	I/O	I/O
289	I/O	I/O	I/O
290	I/O	I/O	I/O
291	I/O	I/O	I/O
292	I/O	I/O	I/O
293	I/O	I/O	I/O
294	I/O	I/O	I/O
295	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
296	GND	GND	GND

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
297	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
298	I/O	I/O	I/O
299	1/O	I/O	I/O
300	I/O	I/O	I/O
301	I/O	I/O	I/O
302	I/O	I/O	I/O
303	I/O	I/O	I/O
304	I/O	I/O	I/O
305	I/O	I/O	I/O
306	$V_{D D}$	$V_{\text {DD }}$	$V_{D D}$
307	GND	GND	GND
308	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
309	I/O	I/O	I/O
310	1/0	I/O	1/0
311	I/O	1/O	I/O
312	1/0	1/0	1/0
313	1/0	1/O	I/O
314	1/0	1/O	1/0
315	1/0	I/O	1/0
316	1/O	1/O	I/O
317	V_{DD}	V_{DD}	$V_{\text {DD }}$
318	GND	GND	GND
319	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
320	I/O	I/O	I/O
321	1/0	1/0	I/O
322	I/O	I/O	I/O
323	1/O	I/O	1/0
324	1/0	I/O	1/0
325	1/0	1/O	1/O
326	1/O	I/O	1/0
327	1/0	1/0	1/O
328	$V_{D D}$	$V_{\text {DD }}$	$V_{\text {DD }}$
329	GND	GND	GND
330	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
331	I/O	I/O	I/O
332	1/0	I/O	I/O
333	1/0	1/0	1/0

352-Pin CQFP			
Pin Number	APA300 Function	APA600 Function	APA1000 Function
334	I/O	I/O	I/O
335	I/O	I/O	I/O
336	I/O	I/O	I/O
337	I/O	I/O	I/O
338	I/O	I/O	I/O
339	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
340	GND	GND	GND
341	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
342	I/O	I/O	I/O
343	I/O	I/O	I/O
344	I/O	I/O	I/O
345	I/O	I/O	I/O
346	I/O	I/O	I/O
347	I/O	I/O	I/O
348	I/O	I/O	I/O
349	I/O	I/O	I/O
350	$V_{D D}$	$V_{D D}$	$V_{\text {DD }}$
351	GND	GND	GND
352	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$

456-Pin PBGA

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
A1	$V_{\text {DDP }}$					
A2	$V_{\text {DDP }}$					
A3	NC	NC	I/O	I/O	I/O	I/O
A4	NC	NC	1/0	1/0	1/O	1/O
A5	NC	NC	I/O	I/O	1/0	I/O
A6	NC	NC	I/O	I/O	1/O	1/O
A7	NC	NC	1/0	I/O	1/0	I/O
A8	I/O	I/O	1/O	I/O	I/O	I/O
A9	1/0	I/O	I/O	I/O	1/O	1/O
A10	1/0	I/O	I/O	I/O	I/O	I/O
A11	I/O	I/O	I/O	I/O	I/O	I/O
A12	I/O	I/O	1/0	1/0	I/O	I/O
A13	1/O	I/O	1/0	1/0	1/0	1/0
A14	I/O	I/O	1/O	1/O	I/O	I/O
A15	1/0	1/0	1/0	1/0	1/0	1/0
A16	I/O	I/O	1/O	1/0	1/O	I/O
A17	1/0	1/0	I/O	I/O	1/0	I/O
A18	1/O	I/O	1/O	1/O	1/O	I/O
A19	I/O	I/O	I/O	I/O	I/O	1/O
A20	NC	NC	1/O	I/O	I/O	I/O
A21	NC	NC	1/0	1/O	1/0	1/0
A22	NC	NC	I/O	1/O	1/0	1/0
A23	NC	NC	I/O	I/O	I/O	I/O
A24	NC	NC	I/O	I/O	I/O	I/O
A25	$V_{\text {DDP }}$					
A26	$V_{\text {DDP }}$					
B1	$V_{\text {DDP }}$					
B2	$V_{\text {DDP }}$					
B3	NC	NC	NC	I/O	I/O	I/O
B4	NC	NC	I/O	1/O	I/O	I/O
B5	NC	NC	1/O	1/O	I/O	1/0
B6	NC	NC	I/O	I/O	I/O	I/O
B7	NC	NC	1/0	1/0	1/0	1/0
B8	1/O	1/O	1/O	1/O	1/0	1/0

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
B9	I/O	I/O	I/O	I/O	I/O	I/O
B10	I/O	I/O	I/O	I/O	I/O	I/O
B11	1/0	1/0	I/O	I/O	1/O	1/O
B12	I/O	I/O	I/O	I/O	1/O	I/O
B13	I/O	I/O	I/O	I/O	1/O	I/O
B14	1/O	I/O	I/O	I/O	1/O	1/O
B15	I/O	I/O	I/O	I/O	I/O	I/O
B16	I/O	I/O	I/O	I/O	1/0	1/0
B17	I/O	I/O	I/O	I/O	1/O	I/O
B18	I/O	I/O	I/O	I/O	I/O	I/O
B19	I/O	I/O	I/O	I/O	I/O	I/O
B20	NC	NC	1/O	1/0	1/0	1/0
B21	NC	NC	I/O	I/O	1/O	1/O
B22	NC	NC	I/O	I/O	1/0	I/O
B23	NC	NC	I/O	1/O	I/O	I/O
B24	NC	NC	I/O	I/O	1/0	1/0
B25	$V_{\text {DDP }}$					
B26	$V_{\text {DDP }}$					
C1	$V_{\text {DDP }}$					
C2	NC	I/O	I/O	I/O	I/O	I/O
C3	$V_{\text {DDP }}$					
C4	NC	NC	NC	I/O	I/O	I/O
C5	NC	NC	I/O	I/O	I/O	I/O
C6	NC	NC	1/0	1/O	1/0	1/0
C7	I/O	I/O	I/O	I/O	1/0	I/O
C8	1/0	1/0	I/O	I/O	1/0	I/O
C9	1/O	I/O	1/O	I/O	I/O	I/O
C10	1/O	I/O	1/0	1/O	1/0	I/O
C11	1/O	I/O	1/O	1/O	1/O	I/O
C12	1/0	1/0	1/0	1/O	1/0	1/0
C13	1/0	1/O	I/O	1/O	1/0	I/O
C14	1/0	1/O	I/O	I/O	1/0	I/O
C15	1/O	1/0	1/O	I/O	1/0	I/O
C16	1/0	1/0	I/O	1/0	I/O	I/O

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
C17	I/O	I/O	I/O	I/O	I/O	I/O
C18	1/0	1/0	1/0	I/O	1/0	1/0
C19	I/O	I/O	I/O	I/O	I/O	I/O
C20	1/0	1/O	1/0	1/0	1/O	1/0
C21	NC	NC	I/O	1/0	1/0	I/O
C22	NC	NC	I/O	1/O	1/O	1/O
C23	NC	NC	I/O	I/O	I/O	I/O
C24	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$				
C25	NC	NC	NC	I/O	I/O	I/O
C26	NC	NC	NC	I/O	I/O	I/O
D1	NC	NC	NC	I/O	1/O	I/O
D2	NC	NC	NC	I/O	I/O	I/O
D3	NC	I/O	I/O	1/O	I/O	I/O
D4	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
D5	NC	NC	I/O	I/O	I/O	I/O
D6	NC	NC	I/O	I/O	1/O	I/O
D7	1/O	I/O	I/O	I/O	1/0	I/O
D8	1/O	I/O	I/O	I/O	1/O	I/O
D9	I/O	I/O	I/O	I/O	I/O	1/O
D10	I/O	I/O	1/O	I/O	I/O	I/O
D11	1/0	1/0	1/0	1/0	1/0	1/0
D12	1/0	1/0	I/O	1/O	1/0	1/0
D13	I/O	I/O	I/O	1/O	I/O	I/O
D14	1/0	I/O	I/O	I/O	I/O	I/O
D15	1/0	I/O	I/O	I/O	I/O	I/O
D16	1/0	I/O	I/O	I/O	I/O	I/O
D17	1/O	1/0	1/O	I/O	1/0	I/O
D18	1/0	I/O	I/O	I/O	1/O	I/O
D19	1/0	I/O	I/O	I/O	I/O	I/O
D20	1/O	I/O	I/O	I/O	I/O	I/O
D21	I/O	I/O	I/O	I/O	I/O	I/O
D22	NC	NC	I/O	1/O	1/0	I/O
D23	$V_{\text {DDP }}$					
D24	NC	I/O	I/O	I/O	I/O	I/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
D25	NC	NC	NC	I/O	I/O	I/O
D26	NC	NC	NC	I/O	1/0	1/0
E1	NC	I/O	I/O	1/O	I/O	1/O
E2	NC	I/O	1/0	I/O	I/O	I/O
E3	NC	1/O	I/O	1/O	I/O	1/O
E4	NC	1/0	1/0	1/0	1/0	1/0
E5	$V_{\text {DD }}$					
E6	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$	$V_{D D}$	$V_{D D}$	$V_{\text {DD }}$
E7	$V_{\text {DD }}$					
E8	$V_{\text {DD }}$					
E9	I/O	I/O	I/O	I/O	I/O	I/O
E10	I/O	I/O	I/O	I/O	I/O	I/O
E11	1/O	1/O	I/O	I/O	I/O	1/O
E12	I/O	I/O	I/O	I/O	I/O	I/O
E13	I/O	1/0	I/O	1/O	1/O	I/O
E14	I/O	1/0	I/O	I/O	I/O	I/O
E15	1/0	1/0	I/O	I/O	1/0	I/O
E16	1/0	1/O	I/O	1/0	1/0	I/O
E17	I/O	I/O	I/O	I/O	I/O	I/O
E18	1/O	I/O	1/O	I/O	1/0	1/O
E19	I/O	I/O	I/O	I/O	I/O	I/O
E20	$V_{\text {DD }}$					
E21	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$
E22	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$	$V_{D D}$	$V_{D D}$	$V_{D D}$
E23	NC	I/O	I/O	I/O	I/O	I/O
E24	NC	I/O	I/O	I/O	I/O	1/0
E25	NC	1/O	1/0	1/0	1/0	1/O
E26	NC	I/O	I/O	1/0	I/O	I/O
F1	NC	I/O	1/0	I/O	1/O	I/O
F2	NC	1/O	I/O	I/O	I/O	1/O
F3	NC	I/O	I/O	I/O	1/0	I/O
F4	NC	I/O	I/O	I/O	I/O	I/O
F5	$V_{\text {DD }}$					
F22	$V_{D D}$	$V_{\text {DD }}$				

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
F23	NC	I/O	I/O	I/O	I/O	I/O
F24	NC	1/0	1/0	1/0	1/0	1/0
F25	NC	I/O	I/O	I/O	I/O	I/O
F26	NC	1/0	1/0	1/0	1/0	1/0
G1	I/O	1/0	1/0	1/0	1/0	I/O
G2	I/O	I/O	1/0	1/O	1/0	1/O
G3	NC	I/O	1/0	1/0	I/O	1/0
G4	NC	I/O	I/O	I/O	I/O	I/O
G5	$V_{\text {DD }}$					
G22	$V_{\text {DD }}$	$V_{D D}$				
G23	NC	I/O	I/O	I/O	I/O	I/O
G24	NC	I/O	I/O	I/O	I/O	1/O
G25	NC	1/0	I/O	I/O	I/O	1/O
G26	I/O	I/O	I/O	I/O	I/O	I/O
H1	1/0	1/0	1/O	1/0	1/0	I/O
H2	1/0	1/O	1/0	1/0	1/0	1/0
H3	1/0	I/O	I/O	I/O	I/O	I/O
H4	I/O	I/O	I/O	1/O	I/O	1/O
H5	$V_{\text {DD }}$					
H22	$V_{\text {DD }}$					
H23	I/O	I/O	I/O	I/O	I/O	I/O
H24	1/0	I/O	1/0	1/0	1/0	1/O
H25	I/O	I/O	I/O	I/O	I/O	I/O
H26	I/O	I/O	I/O	I/O	I/O	1/O
J1	1/0	I/O	I/O	I/O	I/O	I/O
J2	I/O	I/O	I/O	I/O	I/O	I/O
J3	1/O	1/O	I/O	I/O	I/O	1/O
J4	1/0	1/O	I/O	1/0	I/O	1/O
J5	I/O	I/O	I/O	I/O	I/O	I/O
J22	1/O	1/0	I/O	1/O	I/O	1/O
J23	I/O	I/O	I/O	I/O	I/O	I/O
J24	1/0	I/O	I/O	I/O	I/O	I/O
J25	1/0	1/0	1/0	1/0	1/0	1/O
J26	1/0	I/O	I/O	1/0	1/0	1/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
K1	I/O	I/O	I/O	I/O	I/O	I/O
K2	I/O	I/O	I/O	I/O	I/O	I/O
K3	1/0	1/0	I/O	I/O	1/O	1/O
K4	I/O	I/O	I/O	I/O	1/O	I/O
K5	I/O	I/O	I/O	I/O	I/O	I/O
K22	I/O	I/O	I/O	I/O	1/O	1/O
K23	I/O	I/O	I/O	I/O	I/O	I/O
K24	I/O	I/O	I/O	I/O	1/0	1/0
K25	I/O	I/O	I/O	I/O	1/O	I/O
K26	I/O	I/O	I/O	I/O	I/O	I/O
L1	I/O	I/O	I/O	I/O	I/O	I/O
L2	1/0	1/0	1/O	1/0	1/0	1/0
L3	I/O	I/O	I/O	I/O	1/O	1/O
L4	1/0	I/O	I/O	I/O	1/0	I/O
L5	I/O	I/O	I/O	I/O	I/O	I/O
L11	GND	GND	GND	GND	GND	GND
L12	GND	GND	GND	GND	GND	GND
L13	GND	GND	GND	GND	GND	GND
L14	GND	GND	GND	GND	GND	GND
L15	GND	GND	GND	GND	GND	GND
L16	GND	GND	GND	GND	GND	GND
L22	I/O	I/O	I/O	I/O	I/O	I/O
L23	I/O	I/O	I/O	I/O	I/O	I/O
L24	1/0	1/0	1/O	1/O	1/0	1/0
L25	1/0	1/0	I/O	I/O	1/O	I/O
L26	I/O	I/O	I/O	I/O	1/O	I/O
M1	I/O / GL1					
M2	I/O / GL2					
M3	I/O	I/O	1/O	I/O	I/O	I/O
M4	1/O	1/0	1/0	I/O	1/0	I/O
M5	1/O	I/O	I/O	I/O	1/O	I/O
M11	GND	GND	GND	GND	GND	GND
M12	GND	GND	GND	GND	GND	GND
M13	GND	GND	GND	GND	GND	GND

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
M14	GND	GND	GND	GND	GND	GND
M15	GND	GND	GND	GND	GND	GND
M16	GND	GND	GND	GND	GND	GND
M22	I/O / GL4					
M23	1/O	I/O	1/O	1/O	1/0	I/O
M24	I/O	I/O	1/0	I/O	1/0	1/O
M25	I/O	I/O	1/0	1/0	1/0	I/O
M26	I/O	I/O	I/O	I/O	I/O	1/O
N1	I/O	I/O	I/O	I/O	I/O	I/O
N2	I/O / GLMX1					
N3	AGND	AGND	AGND	AGND	AGND	AGND
N4	PPECL1 / Input					
N5	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD
N11	GND	GND	GND	GND	GND	GND
N12	GND	GND	GND	GND	GND	GND
N13	GND	GND	GND	GND	GND	GND
N14	GND	GND	GND	GND	GND	GND
N15	GND	GND	GND	GND	GND	GND
N16	GND	GND	GND	GND	GND	GND
N22	NPECL2	NPECL2	NPECL2	NPECL2	NPECL2	NPECL2
N23	I/O / GL3					
N24	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD
N25	I/O / GLMX2					
N26	AGND	AGND	AGND	AGND	AGND	AGND
P1	I/O	I/O	I/O	I/O	I/O	I/O
P2	I/O	I/O	I/O	I/O	I/O	I/O
P3	1/0	1/O	1/0	1/0	1/0	I/O
P4	1/O	I/O	I/O	I/O	I/O	I/O
P5	NPECL1	NPECL1	NPECL1	NPECL1	NPECL1	NPECL1
P11	GND	GND	GND	GND	GND	GND
P12	GND	GND	GND	GND	GND	GND
P13	GND	GND	GND	GND	GND	GND
P14	GND	GND	GND	GND	GND	GND
P15	GND	GND	GND	GND	GND	GND

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
P16	GND	GND	GND	GND	GND	GND
P22	I/O	1/O	I/O	I/O	1/O	I/O
P23	I/O	1/0	I/O	I/O	I/O	1/O
P24	I/O	I/O	1/0	1/0	I/O	I/O
P25	1/0	1/0	1/0	1/0	1/0	1/0
P26	PPECL2 / Input					
R1	I/O	I/O	1/0	1/0	1/0	I/O
R2	I/O	I/O	I/O	I/O	1/0	1/O
R3	I/O	I/O	1/0	1/0	1/0	I/O
R4	I/O	I/O	I/O	I/O	I/O	I/O
R5	I/O	I/O	I/O	I/O	I/O	I/O
R11	GND	GND	GND	GND	GND	GND
R12	GND	GND	GND	GND	GND	GND
R13	GND	GND	GND	GND	GND	GND
R14	GND	GND	GND	GND	GND	GND
R15	GND	GND	GND	GND	GND	GND
R16	GND	GND	GND	GND	GND	GND
R22	I/O	I/O	I/O	I/O	I/O	I/O
R23	1/0	I/O	I/O	I/O	I/O	I/O
R24	1/0	1/0	I/O	I/O	I/O	1/O
R25	1/0	1/0	1/0	1/0	1/0	1/0
R26	I/O	I/O	I/O	I/O	1/0	I/O
T1	I/O	1/0	1/0	1/0	1/0	I/O
T2	1/0	I/O	I/O	I/O	1/0	I/O
T3	1/0	I/O	I/O	I/O	I/O	1/O
T4	I/O	I/O	I/O	I/O	I/O	I/O
T5	I/O	I/O	I/O	I/O	I/O	I/O
T11	GND	GND	GND	GND	GND	GND
T12	GND	GND	GND	GND	GND	GND
T13	GND	GND	GND	GND	GND	GND
T14	GND	GND	GND	GND	GND	GND
T15	GND	GND	GND	GND	GND	GND
T16	GND	GND	GND	GND	GND	GND
T22	I/O	1/O	I/O	I/O	I/O	I/O

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
T23	I/O	I/O	I/O	I/O	I/O	I/O
T24	1/0	I/O	1/0	1/0	1/0	1/0
T25	I/O	I/O	I/O	I/O	I/O	I/O
T26	1/0	1/0	1/0	1/0	1/0	1/0
U1	1/0	1/0	1/0	1/0	1/0	I/O
U2	I/O	I/O	1/0	I/O	1/0	1/O
U3	I/O	I/O	1/0	1/0	1/0	I/O
U4	I/O	I/O	I/O	I/O	I/O	I/O
U5	I/O	I/O	1/O	I/O	1/O	I/O
U22	1/0	I/O	1/0	1/0	I/O	I/O
U23	1/0	1/O	I/O	I/O	I/O	I/O
U24	I/O	I/O	I/O	I/O	I/O	I/O
U25	1/0	1/0	I/O	I/O	I/O	I/O
U26	I/O	I/O	I/O	I/O	I/O	I/O
V1	1/0	1/O	1/0	1/0	1/0	I/O
V2	I/O	1/O	1/0	1/0	1/0	1/0
V3	1/0	I/O	I/O	1/0	I/O	I/O
V4	1/O	I/O	I/O	I/O	I/O	I/O
V5	I/O	I/O	I/O	I/O	1/0	1/0
V22	1/0	I/O	I/O	I/O	I/O	I/O
V23	1/0	1/0	1/0	1/0	1/0	I/O
V24	1/0	I/O	1/0	1/0	1/0	1/O
V25	1/0	I/O	I/O	1/0	I/O	1/O
V26	I/O	I/O	I/O	I/O	I/O	1/O
W1	1/0	I/O	I/O	I/O	I/O	1/O
W2	1/0	I/O	I/O	I/O	I/O	I/O
W3	1/0	1/O	1/0	1/0	1/0	1/0
W4	1/0	1/O	I/O	1/0	1/O	I/O
W5	$V_{\text {DD }}$					
W22	$V_{\text {DD }}$					
W23	I/O	I/O	I/O	I/O	I/O	I/O
W24	1/0	I/O	I/O	I/O	I/O	I/O
W25	1/0	1/0	1/0	1/0	1/0	1/O
W26	1/0	I/O	I/O	1/0	1/0	I/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
Y1	I/O	I/O	I/O	I/O	I/O	I/O
Y2	I/O	I/O	I/O	I/O	I/O	I/O
Y3	I/O	1/0	I/O	I/O	1/O	1/O
Y4	NC	1/O	1/0	1/O	1/O	1/0
Y5	$V_{\text {DD }}$	V_{DD}				
Y22	$V_{\text {DD }}$					
Y23	NC	I/O	I/O	I/O	I/O	I/O
Y24	NC	1/0	1/0	1/0	I/O	1/O
Y25	NC	1/0	1/0	I/O	1/O	1/0
Y26	NC	1/O	I/O	I/O	I/O	1/O
AA1	I/O	I/O	I/O	I/O	I/O	I/O
AA2	NC	1/0	1/0	1/0	1/O	1/0
AA3	NC	I/O	I/O	I/O	I/O	I/O
AA4	NC	I/O	I/O	1/O	I/O	I/O
AA5	$V_{D D}$	$V_{\text {DD }}$				
AA22	$V_{\text {DD }}$	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{\text {DD }}$
AA23	NC	I/O	I/O	I/O	I/O	I/O
AA24	NC	1/0	1/0	1/0	1/O	1/0
AA25	NC	1/0	I/O	I/O	1/O	I/O
AA26	NC	I/O	I/O	I/O	I/O	1/O
AB1	NC	I/O	I/O	1/O	1/O	I/O
AB2	NC	I/O	I/O	I/O	I/O	I/O
AB3	NC	I/O	I/O	I/O	1/O	I/O
AB4	NC	I/O	I/O	I/O	I/O	I/O
AB5	$V_{\text {DD }}$					
AB6	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$
AB7	$V_{\text {DD }}$	$V_{D D}$				
AB8	I/O	I/O	I/O	I/O	I/O	I/O
AB9	I/O	I/O	I/O	1/0	1/0	I/O
AB10	1/0	1/0	1/0	1/O	1/O	1/0
AB11	1/0	1/0	I/O	1/O	1/O	1/0
AB12	I/O	1/O	I/O	I/O	I/O	I/O
AB13	I/O	I/O	1/O	1/O	1/O	I/O
AB14	1/0	1/0	1/0	1/0	1/O	I/O

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
AB15	I/O	I/O	I/O	I/O	I/O	I/O
AB16	1/O	1/O	1/0	1/0	1/0	1/O
AB17	I/O	I/O	I/O	I/O	I/O	1/O
AB18	I/O	I/O	1/0	1/0	1/0	I/O
AB19	I/O	I/O	1/O	I/O	1/O	1/O
AB20	$V_{\text {DD }}$					
AB21	$V_{\text {DD }}$					
AB22	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$	$V_{D D}$	$V_{D D}$	$V_{\text {DD }}$
AB23	NC	I/O	I/O	I/O	I/O	I/O
AB24	NC	1/0	I/O	I/O	I/O	I/O
AB25	NC	I/O	I/O	I/O	I/O	I/O
AB26	NC	NC	NC	I/O	I/O	1/O
AC1	NC	I/O	I/O	I/O	I/O	1/O
AC2	NC	I/O	I/O	I/O	I/O	I/O
AC3	NC	I/O	I/O	1/O	I/O	1/O
AC4	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AC5	NC	NC	I/O	I/O	I/O	I/O
AC6	I/O	I/O	I/O	1/0	1/0	1/O
AC7	I/O	I/O	I/O	I/O	I/O	I/O
AC8	1/O	1/O	1/O	I/O	1/0	1/O
AC9	1/0	1/0	1/0	1/0	1/0	1/0
AC10	1/O	I/O	I/O	I/O	I/O	1/O
AC11	1/0	1/0	1/0	1/0	I/O	1/0
AC12	1/0	I/O	I/O	1/0	I/O	1/O
AC13	1/0	I/O	I/O	I/O	I/O	I/O
AC14	I/O	I/O	I/O	I/O	I/O	I/O
AC15	1/0	1/0	1/0	1/0	1/0	1/O
AC16	1/O	I/O	1/0	1/0	I/O	I/O
AC17	1/0	I/O	I/O	I/O	I/O	I/O
AC18	1/O	I/O	I/O	I/O	I/O	1/O
AC19	1/0	I/O	I/O	I/O	1/0	1/O
AC20	I/O	I/O	I/O	I/O	I/O	I/O
AC21	TMS	TMS	TMS	TMS	TMS	TMS
AC22	TDO	TDO	TDO	TDO	TDO	TDO

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	$\begin{aligned} & \text { APA600 } \\ & \text { Function } \end{aligned}$	APA750 Function	APA1000 Function
AC23	$V_{\text {DDP }}$					
AC24	RCK	RCK	RCK	RCK	RCK	RCK
AC25	NC	NC	I/O	I/O	I/O	I/O
AC26	NC	I/O	I/O	I/O	I/O	I/O
AD1	NC	NC	NC	I/O	I/O	I/O
AD2	NC	I/O	I/O	1/O	I/O	I/O
AD3	$V_{\text {DDP }}$					
AD4	NC	NC	I/O	I/O	I/O	I/O
AD5	NC	NC	1/0	I/O	I/O	1/0
AD6	NC	NC	I/O	I/O	1/0	I/O
AD7	1/0	I/O	1/0	1/0	I/O	I/O
AD8	I/O	1/O	I/O	I/O	I/O	1/O
AD9	I/O	1/O	I/O	I/O	I/O	I/O
AD10	I/O	I/O	I/O	I/O	I/O	I/O
AD11	I/O	1/O	I/O	I/O	I/O	I/O
AD12	1/0	1/0	1/0	1/0	I/O	I/O
AD13	1/0	I/O	1/0	I/O	I/O	1/O
AD14	1/0	1/O	I/O	1/0	I/O	I/O
AD15	I/O	I/O	I/O	I/O	I/O	I/O
AD16	I/O	I/O	I/O	I/O	I/O	I/O
AD17	1/0	1/0	1/0	1/0	I/O	I/O
AD18	1/0	I/O	I/O	I/O	I/O	1/O
AD19	1/O	I/O	1/0	1/0	I/O	1/O
AD20	NC	NC	I/O	I/O	I/O	I/O
AD21	TCK	TCK	TCK	TCK	TCK	TCK
AD22	$V_{\text {PP }}$					
AD23	NC	NC	NC	I/O	I/O	I/O
AD24	$V_{\text {DDP }}$					
AD25	NC	NC	I/O	I/O	I/O	I/O
AD26	NC	NC	I/O	I/O	I/O	1/O
AE1	$V_{\text {DDP }}$					
AE2	$V_{\text {DDP }}$					
AE3	NC	NC	I/O	I/O	I/O	I/O
AE4	NC	NC	1/0	1/0	1/O	I/O

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
AE5	NC	NC	I/O	I/O	I/O	I/O
AE6	NC	NC	I/O	I/O	1/0	1/0
AE7	NC	NC	I/O	1/O	I/O	I/O
AE8	1/0	1/0	1/0	1/0	1/O	1/0
AE9	1/0	1/0	I/O	I/O	1/0	I/O
AE10	1/O	1/0	I/O	I/O	1/O	1/O
AE11	1/0	1/0	I/O	I/O	1/0	I/O
AE12	I/O	I/O	1/O	I/O	I/O	I/O
AE13	I/O	1/0	I/O	I/O	1/O	1/O
AE14	1/0	I/O	I/O	I/O	I/O	I/O
AE15	1/0	I/O	I/O	I/O	I/O	I/O
AE16	I/O	I/O	I/O	I/O	I/O	I/O
AE17	I/O	I/O	1/O	I/O	1/0	I/O
AE18	1/0	1/0	I/O	I/O	I/O	I/O
AE19	1/O	I/O	1/O	1/0	1/0	1/0
AE20	NC	NC	1/0	I/O	1/0	I/O
AE21	NC	NC	1/O	I/O	1/0	I/O
AE22	NC	NC	I/O	I/O	I/O	I/O
AE23	$\mathrm{V}_{\text {PN }}$	$\mathrm{V}_{\text {PN }}$	$V_{\text {PN }}$	$\mathrm{V}_{\text {PN }}$	$V_{\text {PN }}$	$V_{\text {PN }}$
AE24	TRST	TRST	TRST	TRST	TRST	TRST
AE25	$V_{\text {DDP }}$					
AE26	$V_{\text {DDP }}$					
AF1	$V_{\text {DDP }}$					
AF2	$V_{\text {DDP }}$					
AF3	NC	NC	I/O	I/O	I/O	I/O
AF4	NC	NC	I/O	I/O	I/O	I/O
AF5	NC	NC	I/O	I/O	1/0	1/0
AF6	NC	NC	I/O	I/O	1/O	I/O
AF7	NC	NC	I/O	I/O	I/O	I/O
AF8	NC	NC	NC	I/O	I/O	I/O
AF9	I/O	I/O	I/O	I/O	I/O	I/O
AF10	I/O	1/0	1/0	I/O	1/0	I/O
AF11	1/0	1/0	I/O	1/O	1/0	1/0
AF12	1/0	1/0	1/O	1/0	1/0	1/0

456-Pin PBGA						
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
AF13	I/O	I/O	I/O	I/O	I/O	I/O
AF14	1/0	I/O	1/O	I/O	1/O	1/0
AF15	1/0	1/0	I/O	1/O	I/O	1/0
AF16	1/0	1/0	I/O	I/O	1/O	I/O
AF17	I/O	I/O	1/O	1/O	1/0	I/O
AF18	NC	NC	1/O	1/O	1/0	1/O
AF19	NC	NC	I/O	I/O	I/O	1/0
AF20	NC	NC	I/O	I/O	I/O	I/O
AF21	NC	NC	I/O	I/O	I/O	I/O
AF22	NC	NC	I/O	I/O	I/O	I/O
AF23	TDI	TDI	TDI	TDI	TDI	TDI
AF24	NC	NC	I/O	I/O	I/O	I/O
AF25	$V_{\text {DDP }}$					
AF26	$V_{\text {DDP }}$					

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

144-FBGA Pin				
Pin Number	$\begin{aligned} & \text { APA075 } \\ & \text { Function } \end{aligned}$	APA150 Function	APA300 Function	APA450 Function
A1	I/O	I/O	I/O	I/O
A2	I/O	I/O	I/O	I/O
A3	I/O	I/O	1/0	I/O
A4	I/O	1/0	1/0	I/O
A5	I/O	I/O	I/O	I/O
A6	GND	GND	GND	GND
A7	I/O	I/O	I/O	I/O
A8	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$
A9	I/O	I/O	I/O	I/O
A10	I/O	I/O	I/O	I/O
A11	I/O	I/O	I/O	I/O
A12	I/O	I/O	I/O	I/O
B1	I/O	I/O	I/O	I/O
B2	GND	GND	GND	GND
B3	I/O	I/O	I/O	I/O
B4	I/O	I/O	1/O	I/O
B5	I/O	I/O	1/O	I/O
B6	1/O	1/0	1/0	1/O
B7	I/O	I/O	I/O	I/O
B8	I/O	I/O	I/O	I/O
B9	I/O	I/O	I/O	I/O
B10	I/O	I/O	I/O	I/O
B11	GND	GND	GND	GND
B12	I/O	I/O	I/O	I/O
C1	I/O	I/O	I/O	I/O
C2	I/O / GL1	I/O / GL1	I/O / GL1	I/O / GL1
C3	I/O	I/O	I/O	I/O
C4	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$
C5	I/O	I/O	I/O	I/O
C6	1/0	1/0	1/0	1/O
C7	I/O	I/O	1/O	I/O
C8	I/O	I/O	I/O	I/O
C9	I/O	I/O	1/O	1/O
C10	I/O	I/O	I/O	I/O
C11	1/O	I/O	1/0	1/O
C12	I/O	I/O	1/0	1/O
D1	1/0	I/O	1/0	1/0

144-FBGA Pin				
Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function
D2	I/O	I/O	I/O	I/O
D3	I/O	I/O	I/O	I/O
D4	I/O	I/O	I/O	I/O
D5	I/O	I/O	I/O	I/O
D6	I/O	I/O	I/O	I/O
D7	I/O	I/O	I/O	I/O
D8	I/O	I/O	I/O	I/O
D9	I/O	I/O	I/O	I/O
D10	I/O	I/O	I/O	I/O
D11	I/O	I/O	I/O	I/O
D12	I/O / GLMX2	I/O / GLMX2	I/O / GLMX2	I/O / GLMX2
E1	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$	$V_{\text {DD }}$
E2	I/O	I/O	I/O	I/O
E3	I/O	I/O	I/O	I/O
E4	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E5	I/O	I/O	I/O	I/O
E6	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E7	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E8	AVDD	AVDD	AVDD	AVDD
E9	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E10	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
E11	NPECL2	NPECL2	NPECL2	NPECL2
E12	AGND	AGND	AGND	AGND
F1	I/O / GL2	I/O / GL2	I/O / GL2	I/O / GL2
F2	AGND	AGND	AGND	AGND
F3	I/O / GLMX1	I/O / GLMX1	I/O / GLMX1	I/O / GLMX1
F4	I/O	I/O	I/O	I/O
F5	GND	GND	GND	GND
F6	GND	GND	GND	GND
F7	GND	GND	GND	GND
F8	I/O	I/O	I/O	I/O
F9	I/O / GL4	I/O / GL4	I/O / GL4	I/O / GL4
F10	GND	GND	GND	GND
F11	PPECL2 / Input	PPECL2 / Input	PPECL2 / Input	PPECL2 / Input
F12	I/O / GL3	I/O / GL3	I/O / GL3	I/O / GL3

144-FBGA Pin				
Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function
G1	PPECL1 / Input	PPECL1 / Input	PPECL1 / Input	PPECL1 / Input
G2	GND	GND	GND	GND
G3	AVDD	AVDD	AVDD	AVDD
G4	NPECL1	NPECL1	NPECL1	NPECL1
G5	GND	GND	GND	GND
G6	GND	GND	GND	GND
G7	GND	GND	GND	GND
G8	I/O	I/O	I/O	I/O
G9	I/O	1/0	1/0	I/O
G10	I/O	I/O	1/0	I/O
G11	I/O	I/O	I/O	I/O
G12	1/0	1/0	1/0	1/0
H1	V_{DD}	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
H2	I/O	I/O	I/O	I/O
H3	I/O	I/O	1/0	I/O
H4	1/O	I/O	I/O	I/O
H5	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$
H6	I/O	I/O	I/O	I/O
H7	1/O	1/0	1/0	I/O
H8	1/O	I/O	I/O	I/O
H9	I/O	I/O	I/O	I/O
H10	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H11	I/O	I/O	I/O	I/O
H12	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$
J1	I/O	I/O	I/O	I/O
J2	I/O	1/O	1/0	1/O
J3	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
J4	I/O	I/O	I/O	I/O
J5	1/O	I/O	I/O	I/O
J6	I/O	I/O	I/O	I/O
J7	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
J8	TCK	TCK	TCK	TCK
J9	I/O	I/O	I/O	I/O
J10	TDO	TDO	TDO	TDO
J11	I/O	I/O	I/O	I/O
J12	I/O	I/O	I/O	1/O

144-FBGA Pin				
Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function
K1	I/O	I/O	I/O	I/O
K2	I/O	I/O	I/O	I/O
K3	I/O	I/O	I/O	I/O
K4	I/O	I/O	I/O	I/O
K5	I/O	1/0	I/O	I/O
K6	I/O	I/O	I/O	I/O
K7	GND	GND	GND	GND
K8	I/O	I/O	I/O	I/O
K9	I/O	I/O	I/O	I/O
K10	GND	GND	GND	GND
K11	I/O	I/O	I/O	I/O
K12	I/O	I/O	I/O	I/O
L1	GND	GND	GND	GND
L2	I/O	I/O	I/O	I/O
L3	I/O	1/0	1/0	1/0
L4	I/O	1/0	1/0	1/0
L5	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
L6	I/O	I/O	I/O	I/O
L7	1/O	1/0	1/O	I/O
L8	I/O	I/O	I/O	I/O
L9	TMS	TMS	TMS	TMS
L10	RCK	RCK	RCK	RCK
L11	I/O	I/O	I/O	I/O
L12	TRST	TRST	TRST	TRST
M1	I/O	I/O	I/O	I/O
M2	I/O	I/O	1/O	I/O
M3	I/O	I/O	1/0	I/O
M4	I/O	1/0	I/O	I/O
M5	1/0	I/O	1/0	I/O
M6	I/O	I/O	I/O	I/O
M7	I/O	I/O	I/O	I/O
M8	I/O	I/O	I/O	I/O
M9	TDI	TDI	TDI	TDI
M10	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M11	$V_{\text {PP }}$	$V_{\text {PP }}$	$V_{\text {PP }}$	$V_{\text {PP }}$
M12	$V_{P N}$	$V_{\text {PN }}$	$V_{P N}$	$V_{\text {PN }}$

\qquad

256-Pin FBGA

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

256-Pin FBGA				
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function
A1	GND	GND	GND	GND
A2	I/O	I/O	I/O	I/O
A3	I/O	I/O	I/O	1/0
A4	I/O	I/O	I/O	I/O
A5	I/O	I/O	I/O	I/O
A6	I/O	I/O	I/O	I/O
A7	I/O	I/O	I/O	I/O
A8	I/O	I/O	I/O	I/O
A9	I/O	I/O	I/O	I/O
A10	1/0	I/O	I/O	I/O
A11	1/0	I/O	I/O	I/O
A12	I/O	I/O	I/O	I/O
A13	I/O	I/O	I/O	I/O
A14	1/0	I/O	1/0	I/O
A15	I/O	I/O	I/O	I/O
A16	GND	GND	GND	GND
B1	I/O	I/O	I/O	I/O
B2	I/O	I/O	1/0	1/0
B3	I/O	I/O	I/O	I/O
B4	1/0	I/O	1/0	I/O
B5	I/O	I/O	I/O	I/O
B6	I/O	I/O	I/O	I/O
B7	I/O	I/O	I/O	I/O
B8	1/0	I/O	I/O	1/0
B9	1/O	1/O	1/O	I/O
B10	I/O	I/O	I/O	I/O
B11	I/O	I/O	I/O	I/O
B12	I/O	1/O	I/O	I/O
B13	I/O	I/O	I/O	I/O
B14	I/O	I/O	I/O	I/O
B15	1/0	I/O	1/0	I/O
B16	I/O	I/O	I/O	I/O
C1	I/O	I/O	I/O	I/O
C2	1/O	I/O	I/O	I/O
C3	1/0	I/O	I/O	I/O

256-Pin FBGA				
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function
C4	I/O	I/O	I/O	I/O
C5	I/O	I/O	I/O	I/O
C6	I/O	I/O	I/O	I/O
C7	1/0	I/O	I/O	I/O
C8	I/O	I/O	I/O	I/O
C9	I/O	I/O	I/O	I/O
C10	I/O	I/O	I/O	I/O
C11	I/O	I/O	I/O	I/O
C12	I/O	I/O	I/O	I/O
C13	I/O	I/O	I/O	I/O
C14	1/0	I/O	I/O	I/O
C15	I/O	I/O	I/O	I/O
C16	I/O	I/O	I/O	I/O
D1	I/O	I/O	I/O	I/O
D2	1/0	1/0	1/O	I/O
D3	I/O	I/O	I/O	I/O
D4	I/O	I/O	I/O	I/O
D5	1/0	I/O	1/O	I/O
D6	I/O	I/O	I/O	I/O
D7	I/O	I/O	I/O	I/O
D8	1/0	I/O	I/O	I/O
D9	1/0	I/O	I/O	1/O
D10	1/0	I/O	1/0	1/O
D11	1/0	1/0	1/O	1/0
D12	1/0	I/O	I/O	I/O
D13	1/0	1/O	1/O	1/O
D14	I/O	I/O	1/0	1/0
D15	1/0	I/O	1/O	1/O
D16	1/0	1/O	1/O	1/O
E1	I/O	I/O	I/O	I/O
E2	1/0	1/0	1/0	1/O
E3	1/0	I/O	1/O	1/O
E4	1/0	1/0	I/O	1/O
E5	1/0	1/O	1/O	I/O
E6	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$

256-Pin FBGA				
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function
E7	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E8	I/O	I/O	I/O	I/O
E9	I/O	I/O	I/O	I/O
E10	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E11	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E12	I/O	I/O	I/O	I/O
E13	1/O	I/O	I/O	I/O
E14	1/0	I/O	I/O	I/O
E15	I/O	I/O	I/O	I/O
E16	I/O	I/O	I/O	I/O
F1	1/0	I/O	I/O	1/0
F2	1/O	1/O	I/O	I/O
F3	I/O	I/O	I/O	I/O
F4	1/O	1/O	1/0	1/O
F5	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
F6	GND	GND	GND	GND
F7	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
F8	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$
F9	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
F10	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
F11	GND	GND	GND	GND
F12	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
F13	I/O	I/O	I/O	I/O
F14	I/O	1/O	I/O	1/0
F15	I/O	I/O	I/O	I/O
F16	1/O	1/O	1/O	I/O
G1	1/0	1/0	1/0	1/0
G2	I/O	1/0	I/O	I/O
G3	1/O	1/0	I/O	I/O
G4	I/O	1/O	I/O	1/0
G5	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
G6	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
G7	GND	GND	GND	GND
G8	GND	GND	GND	GND
G9	GND	GND	GND	GND

256-Pin FBGA				
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function
G10	GND	GND	GND	GND
G11	$V_{D D}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
G12	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
G13	I/O	I/O	I/O	I/O
G14	I/O	I/O	I/O	I/O
G15	I/O	I/O	I/O	I/O
G16	I/O	I/O	I/O	1/O
H1	I/O / GL1	I/O / GL1	I/O / GL1	I/O / GL1
H2	NPECL1	NPECL1	NPECL1	NPECL1
H3	I/O / GLMX1	I/O / GLMX1	I/O / GLMX1	I/O / GLMX1
H4	AGND	AGND	AGND	AGND
H5	I/O	I/O	I/O	I/O
H6	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
H7	GND	GND	GND	GND
H8	GND	GND	GND	GND
H9	GND	GND	GND	GND
H10	GND	GND	GND	GND
H11	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$	$V_{\text {DD }}$
H12	I/O	I/O	I/O	I/O
H13	I/O / GLMX2	I/O / GLMX2	I/O / GLMX2	I/O / GLMX2
H14	NPECL2	NPECL2	NPECL2	NPECL2
H15	AGND	AGND	AGND	AGND
H16	I/O / GL4	I/O / GL4	I/O / GL4	I/O / GL4
J1	I/O / GL2	I/O / GL2	I/O / GL2	I/O / GL2
J2	PPECL1 / Input	PPECL1 / Input	PPECL1 / Input	PPECL1 / Input
$J 3$	AVDD	AVDD	AVDD	AVDD
$J 4$	I/O	I/O	I/O	I/O
J5	1/0	1/0	1/O	1/O
J6	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
J7	GND	GND	GND	GND
J8	GND	GND	GND	GND
J9	GND	GND	GND	GND
$J 10$	GND	GND	GND	GND
$J 11$	$V_{\text {DD }}$	$V_{D D}$	$V_{D D}$	$V_{\text {DD }}$

256-Pin FBGA				
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function
J12	I/O	I/O	I/O	I/O
$J 13$	PPECL2 / Input			
J14	I/O	I/O	I/O	I/O
J15	AVDD	AVDD	AVDD	AVDD
J16	I/O / GL3	I/O / GL3	I/O / GL3	I/O / GL3
K1	I/O	I/O	I/O	I/O
K2	I/O	I/O	I/O	I/O
K3	I/O	I/O	I/O	I/O
K4	1/O	I/O	I/O	I/O
K5	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K6	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
K7	GND	GND	GND	GND
K8	GND	GND	GND	GND
K9	GND	GND	GND	GND
K10	GND	GND	GND	GND
K11	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
K12	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K13	I/O	I/O	I/O	I/O
K14	1/0	I/O	I/O	I/O
K15	I/O	I/O	I/O	I/O
K16	1/O	I/O	I/O	I/O
L1	1/O	I/O	I/O	I/O
L2	1/0	I/O	I/O	I/O
L3	1/O	I/O	I/O	I/O
L4	I/O	I/O	I/O	1/0
L5	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
L6	GND	GND	GND	GND
L7	V_{DD}	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
L8	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
L9	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
L10	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
L11	GND	GND	GND	GND
L12	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
L13	I/O	I/O	I/O	I/O

256-Pin FBGA				
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function
L14	I/O	I/O	I/O	I/O
L15	I/O	I/O	I/O	I/O
L16	I/O	I/O	I/O	I/O
M1	I/O	I/O	I/O	I/O
M2	I/O	I/O	I/O	I/O
M3	1/O	I/O	I/O	1/O
M4	1/0	I/O	I/O	I/O
M5	I/O	I/O	I/O	I/O
M6	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M7	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M8	I/O	I/O	I/O	I/O
M9	1/0	I/O	I/O	I/O
M10	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M11	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M12	I/O	I/O	I/O	I/O
M13	I/O	I/O	I/O	I/O
M14	I/O	I/O	I/O	I/O
M15	I/O	I/O	I/O	I/O
M16	I/O	I/O	I/O	I/O
N1	I/O	I/O	I/O	I/O
N2	I/O	I/O	I/O	I/O
N3	I/O	I/O	I/O	I/O
N4	1/0	1/O	I/O	I/O
N5	1/O	1/O	I/O	1/O
N6	1/0	I/O	I/O	I/O
N7	1/0	1/0	1/0	I/O
N8	I/O	I/O	I/O	1/O
N9	I/O	I/O	I/O	I/O
N10	1/0	1/O	1/O	I/O
N11	I/O	I/O	I/O	I/O
N12	I/O	I/O	I/O	I/O
N13	I/O	I/O	1/O	I/O
N14	RCK	RCK	RCK	RCK
N15	I/O	I/O	I/O	I/O
N16	I/O	I/O	1/O	I/O

256-Pin FBGA				
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function
P1	I/O	I/O	I/O	I/O
P2	I/O	I/O	I/O	I/O
P3	I/O	I/O	I/O	1/0
P4	I/O	I/O	I/O	I/O
P5	I/O	I/O	I/O	I/O
P6	I/O	I/O	I/O	I/O
P7	I/O	I/O	I/O	I/O
P8	I/O	I/O	I/O	I/O
P9	I/O	I/O	I/O	I/O
P10	I/O	I/O	I/O	I/O
P11	I/O	I/O	1/0	1/0
P12	I/O	I/O	I/O	I/O
P13	TCK	TCK	TCK	TCK
P14	$V_{\text {PP }}$	$V_{\text {PP }}$	$V_{\text {PP }}$	$V_{\text {PP }}$
P15	TRST	TRST	TRST	TRST
P16	I/O	I/O	I/O	I/O
R1	I/O	I/O	I/O	1/0
R2	I/O	1/O	I/O	I/O
R3	I/O	1/0	I/O	I/O
R4	I/O	1/0	I/O	I/O
R5	I/O	1/0	I/O	I/O
R6	1/O	1/O	1/O	1/0
R7	I/O	1/0	I/O	I/O
R8	I/O	1/O	I/O	I/O
R9	1/O	1/0	I/O	1/0
R10	1/O	1/0	I/O	1/0
R11	1/0	1/0	I/O	I/O
R12	1/O	1/0	I/O	1/0
R13	I/O	I/O	I/O	I/O
R14	TDI	TDI	TDI	TDI
R15	V_{PN}	$\mathrm{V}_{\text {PN }}$	V_{PN}	$V_{\text {PN }}$
R16	TDO	TDO	TDO	TDO
T1	GND	GND	GND	GND
T2	I/O	I/O	I/O	I/O
T3	1/0	1/0	1/0	I/O

256-Pin FBGA				
Pin Number	APA150 Function	APA300 Function	APA450 Function	APA600 Function
T4	I/O	I/O	I/O	I/O
T5	I/O	I/O	I/O	I/O
T6	I/O	I/O	I/O	I/O
T7	I/O	I/O	I/O	I/O
T8	I/O	I/O	I/O	I/O
T9	I/O	I/O	I/O	I/O
T10	I/O	I/O	I/O	I/O
T11	I/O	I/O	I/O	I/O
T12	I/O	I/O	I/O	I/O
T13	I/O	I/O	I/O	I/O
T14	I/O	I/O	I/O	I/O
T15	TMS	TMS	TMS	TMS
T16	GND	GND	GND	GND

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

484-Pin FBGA			484-Pin FBGA			484-Pin FBGA		
Pin Number	APA450 Function	$\begin{aligned} & \text { APA600 } \\ & \text { Function } \end{aligned}$	Pin Number	$\begin{gathered} \text { APA450 } \\ \text { Function } \end{gathered}$	$\begin{aligned} & \text { APA600 } \\ & \text { Function } \end{aligned}$	Pin Number	$\begin{aligned} & \text { APA450 } \\ & \text { Function } \end{aligned}$	APA600 Function
A1	GND	GND	B15	I/O	I/O	D7	I/O	I/O
A2	GND	GND	B16	1/0	1/O	D8	1/0	I/O
A3	$V_{\text {DDP }}$	$V_{\text {DDP }}$	B17	I/O	I/O	D9	I/O	I/O
A4	I/O	I/O	B18	I/O	1/O	D10	1/O	I/O
A5	1/O	I/O	B19	1/O	I/O	D11	I/O	I/O
A6	I/O	I/O	B20	I/O	I/O	D12	I/O	I/O
A7	I/O	I/O	B21	$V_{\text {DDP }}$	$V_{\text {DDP }}$	D13	I/O	I/O
A8	I/O	I/O	B22	GND	GND	D14	I/O	I/O
A9	I/O	I/O	C1	$V_{\text {DDP }}$	$V_{\text {DDP }}$	D15	I/O	I/O
A10	I/O	I/O	C2	NC	I/O	D16	I/O	I/O
A11	I/O	I/O	C3	I/O	I/O	D17	I/O	1/O
A12	I/O	1/O	C4	I/O	I/O	D18	I/O	I/O
A13	I/O	I/O	C5	GND	GND	D19	GND	GND
A14	I/O	I/O	C6	I/O	I/O	D20	I/O	I/O
A15	1/O	I/O	C7	1/O	I/O	D21	I/O	I/O
A16	I/O	I/O	C8	$V_{\text {DD }}$	$V_{\text {DD }}$	D22	I/O	I/O
A17	I/O	I/O	C9	$V_{\text {DD }}$	$V_{\text {DD }}$	E1	I/O	I/O
A18	I/O	I/O	C10	I/O	I/O	E2	NC	I/O
A19	I/O	I/O	C11	I/O	I/O	E3	GND	GND
A20	$V_{\text {DDP }}$	$V_{\text {DDP }}$	C12	NC	I/O	E4	I/O	I/O
A21	GND	GND	C13	NC	I/O	E5	I/O	I/O
A22	GND	GND	C14	$V_{\text {DD }}$	$V_{D D}$	E6	1/O	I/O
B1	GND	GND	C15	$V_{\text {DD }}$	$V_{\text {DD }}$	E7	I/O	I/O
B2	$V_{\text {DDP }}$	$V_{\text {DDP }}$	C16	NC	I/O	E8	1/0	I/O
B3	I/O	I/O	C17	I/O	I/O	E9	I/O	I/O
B4	1/0	I/O	C18	GND	GND	E10	I/O	I/O
B5	I/O	I/O	C19	I/O	I/O	E11	I/O	I/O
B6	I/O	I/O	C20	I/O	I/O	E12	I/O	I/O
B7	I/O	1/O	C21	I/O	I/O	E13	I/O	I/O
B8	1/O	1/0	C22	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	E14	1/O	I/O
B9	I/O	1/O	D1	I/O	I/O	E15	I/O	I/O
B10	I/O	I/O	D2	I/O	I/O	E16	I/O	I/O
B11	I/O	I/O	D3	NC	I/O	E17	I/O	I/O
B12	I/O	I/O	D4	GND	GND	E18	I/O	I/O
B13	I/O	I/O	D5	I/O	I/O	E19	I/O	I/O
B14	1/0	1/0	D6	1/0	I/O	E20	GND	GND

484-Pin FBGA			484-Pin FBGA			484-Pin FBGA		
Pin Number	APA450 Function	APA600 Function	Pin Number	APA450 Function	APA600 Function	Pin Number	APA450 Function	APA600 Function
E21	I/O	I/O	G13	I/O	I/O	J5	I/O	I/O
E22	I/O	I/O	G14	I/O	I/O	J6	I/O	I/O
F1	1/O	1/O	G15	1/O	I/O	J7	I/O	I/O
F2	I/O	1/O	G16	1/O	I/O	J8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
F3	I/O	I/O	G17	I/O	I/O	J9	GND	GND
F4	I/O	I/O	G18	I/O	I/O	J10	$V_{\text {DD }}$	$V_{\text {DD }}$
F5	I/O	I/O	G19	I/O	I/O	J11	$V_{\text {DD }}$	$V_{\text {DD }}$
F6	I/O	I/O	G20	I/O	I/O	$J 12$	$V_{\text {DD }}$	$V_{\text {DD }}$
F7	I/O	1/O	G21	1/O	I/O	J13	$V_{\text {DD }}$	$V_{\text {DD }}$
F8	I/O	1/O	G22	1/O	I/O	J14	GND	GND
F9	I/O	I/O	H1	I/O	I/O	$J 15$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
F10	I/O	I/O	H2	I/O	I/O	$J 16$	I/O	I/O
F11	1/O	1/O	H3	$V_{\text {DD }}$	$V_{D D}$	$J 17$	I/O	I/O
F12	I/O	I/O	H4	I/O	I/O	J18	I/O	I/O
F13	I/O	I/O	H5	I/O	I/O	J19	I/O	I/O
F14	I/O	I/O	H6	I/O	I/O	J20	NC	I/O
F15	I/O	I/O	H7	I/O	I/O	J21	I/O	I/O
F16	I/O	I/O	H8	I/O	I/O	J22	I/O	I/O
F17	I/O	I/O	H9	$V_{\text {DDP }}$	$V_{\text {DDP }}$	K1	I/O	I/O
F18	I/O	I/O	H10	$V_{\text {DDP }}$	$V_{\text {DDP }}$	K2	I/O	I/O
F19	I/O	I/O	H11	I/O	I/O	K3	NC	I/O
F20	I/O	I/O	H12	I/O	I/O	K4	I/O	I/O
F21	I/O	I/O	H13	$V_{\text {DDP }}$	$V_{\text {DDP }}$	K5	I/O	I/O
F22	NC	1/O	H14	$V_{\text {DDP }}$	$V_{\text {DDP }}$	K6	I/O	I/O
G1	I/O	I/O	H15	I/O	I/O	K7	I/O	I/O
G2	I/O	1/0	H16	1/0	1/O	K8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
G3	NC	I/O	H17	I/O	I/O	K9	$V_{\text {DD }}$	$V_{\text {DD }}$
G4	I/O	I/O	H18	I/O	I/O	K10	GND	GND
G5	I/O	I/O	H19	I/O	I/O	K11	GND	GND
G6	I/O	I/O	H2O	$V_{\text {DD }}$	$V_{D D}$	K12	GND	GND
G7	I/O	I/O	H21	I/O	I/O	K13	GND	GND
G8	I/O	I/O	H22	I/O	I/O	K14	$V_{\text {DD }}$	$V_{\text {DD }}$
G9	I/O	I/O	J1	I/O	I/O	K15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
G10	I/O	I/O	J2	I/O	I/O	K16	I/O	I/O
G11	I/O	I/O	J3	NC	I/O	K17	I/O	I/O
G12	I/O	I/O	J4	I/O	I/O	K18	I/O	I/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

484-Pin FBGA			484-Pin FBGA			484-Pin FBGA		
Pin Number	APA450 Function	APA600 Function	Pin Number	APA450 Function	$\begin{aligned} & \text { APA600 } \\ & \text { Function } \end{aligned}$	Pin Number	$\begin{gathered} \text { APA450 } \\ \text { Function } \end{gathered}$	APA600 Function
K19	I/O	I/O	M10	GND	GND	P1	I/O	I/O
K20	1/0	1/0	M11	GND	GND	P2	I/O	I/O
K21	I/O	I/O	M12	GND	GND	P3	I/O	I/O
K22	1/O	1/O	M13	GND	GND	P4	I/O	I/O
L1	NC	I/O	M14	$V_{\text {DD }}$	$V_{\text {DD }}$	P5	I/O	1/O
L2	I/O	I/O	M15	I/O	I/O	P6	I/O	I/O
L3	I/O	I/O	M16	PPECL2 /	PPECL2 /	P7	I/O	I/O
L4	I/O / GL1	I/O / GL1		Input	Input	P8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
L5	NPECL1	NPECL1	M17	I/O	I/O	P9	GND	GND
L6	I/O / GLMX1	I/O / GLMX1	M18	AVDD	AVDD	P10	$V_{\text {DD }}$	$V_{\text {DD }}$
L7	AGND	AGND	M19	I/O / GL3	I/O / GL3	P11	$V_{\text {DD }}$	$V_{D D}$
L8	I/O	I/O	M20	I/O	I/O	P12	$V_{\text {DD }}$	$V_{\text {DD }}$
L9	$V_{\text {DD }}$	$V_{\text {DD }}$	M21	I/O	I/O	P13	$V_{\text {DD }}$	$V_{\text {DD }}$
L10	GND	GND	M22	I/O	I/O	P14	GND	GND
L11	GND	GND	N1	I/O	I/O	P15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
L12	GND	GND	N2	I/O	I/O	P16	I/O	I/O
L13	GND	GND	N3	NC	I/O	P17	1/O	I/O
L14	$V_{\text {DD }}$	$V_{\text {DD }}$	N4	I/O	I/O	P18	I/O	I/O
L15	I/O	I/O	N5	I/O	I/O	P19	I/O	I/O
L16	I/O / GLMX2	I/O / GLMX2	N6	I/O	I/O	P20	NC	I/O
L17	NPECL2	NPECL2	N7	I/O	I/O	P21	I/O	I/O
L18	AGND	AGND	N8	$V_{\text {DDP }}$	$V_{\text {DDP }}$	P22	I/O	I/O
L19	I/O / GL4	I/O / GL4	N9	$V_{\text {DD }}$	$V_{\text {DD }}$	R1	I/O	I/O
L20	I/O	I/O	N10	GND	GND	R2	I/O	1/O
L21	1/O	I/O	N11	GND	GND	R3	$V_{\text {DD }}$	$V_{\text {DD }}$
L22	1/O	I/O	N12	GND	GND	R4	I/O	I/O
M1	I/O	I/O	N13	GND	GND	R5	I/O	I/O
M2	I/O	I/O	N14	$V_{\text {DD }}$	$V_{\text {DD }}$	R6	I/O	I/O
M3	1/O	I/O	N15	$V_{\text {DDP }}$	$V_{\text {DDP }}$	R7	I/O	I/O
M4	I/O / GL2	I/O / GL2	N16	I/O	I/O	R8	I/O	I/O
M5	PPECL1 /	PPECL1 /	N17	I/O	I/O	R9	$V_{\text {DDP }}$	$V_{\text {DDP }}$
	Input	Input	N18	I/O	I/O	R10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M6	AVDD	AVDD	N19	I/O	I/O	R11	I/O	I/O
M7	I/O	I/O	N20	NC	I/O	R12	I/O	I/O
M8	I/O	I/O	N21	I/O	I/O	R13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M9	$V_{D D}$	$V_{\text {DD }}$	N22	I/O	I/O	R14	$V_{\text {DDP }}$	$V_{\text {DDP }}$

484-Pin FBGA			484-Pin FBGA			484-Pin FBGA		
Pin Number	APA450 Function	APA600 Function	Pin Number	$\begin{aligned} & \text { APA450 } \\ & \text { Function } \end{aligned}$	$\begin{aligned} & \text { APA600 } \\ & \text { Function } \end{aligned}$	Pin Number	APA450 Function	APA600 Function
R15	I/O	I/O	U7	I/O	I/O	V21	NC	I/O
R16	I/O	I/O	U8	I/O	I/O	V22	I/O	I/O
R17	1/O	1/0	U9	1/O	I/O	W1	NC	I/O
R18	1/O	I/O	U10	1/O	1/0	W2	I/O	I/O
R19	I/O	I/O	U11	I/O	I/O	W3	I/O	I/O
R20	$V_{\text {DD }}$	$V_{\text {DD }}$	U12	I/O	I/O	W4	GND	GND
R21	I/O	I/O	U13	I/O	I/O	W5	I/O	I/O
R22	1/O	I/O	U14	I/O	I/O	W6	I/O	I/O
T1	I/O	I/O	U15	I/O	I/O	W7	I/O	I/O
T2	I/O	1/0	U16	TCK	TCK	W8	I/O	I/O
T3	NC	I/O	U17	$V_{\text {PP }}$	$V_{\text {PP }}$	W9	I/O	I/O
T4	I/O	1/0	U18	TRST	TRST	W10	I/O	I/O
T5	I/O	I/O	U19	I/O	I/O	W11	I/O	I/O
T6	I/O	I/O	U20	NC	I/O	W12	I/O	I/O
T7	1/O	I/O	U21	I/O	I/O	W13	1/O	I/O
T8	1/O	I/O	U22	I/O	1/0	W14	I/O	I/O
T9	1/O	I/O	V1	1/O	I/O	W15	1/O	I/O
T10	1/O	I/O	V2	I/O	I/O	W16	I/O	I/O
T11	1/O	I/O	V3	GND	GND	W17	I/O	I/O
T12	1/O	I/O	V4	I/O	I/O	W18	TMS	TMS
T13	I/O	I/O	V5	I/O	I/O	W19	GND	GND
T14	1/O	1/0	V6	1/O	1/0	W20	NC	I/O
T15	1/0	I/O	V7	1/O	1/0	W21	NC	1/0
T16	I/O	I/O	V8	I/O	I/O	W22	I/O	I/O
T17	RCK	RCK	V9	1/O	I/O	Y1	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
T18	I/O	I/O	V10	1/O	I/O	Y2	I/O	I/O
T19	I/O	I/O	V11	I/O	I/O	Y3	I/O	I/O
T20	NC	I/O	V12	1/O	I/O	Y4	I/O	I/O
T21	I/O	I/O	V13	I/O	I/O	Y5	GND	GND
T22	1/O	I/O	V14	I/O	I/O	Y6	I/O	I/O
U1	1/O	1/0	V15	I/O	1/0	Y7	I/O	I/O
U2	1/O	I/O	V16	I/O	I/O	Y8	$V_{\text {DD }}$	$V_{\text {DD }}$
U3	1/0	I/O	V17	TDI	TDI	Y9	$V_{\text {DD }}$	$V_{\text {DD }}$
U4	1/O	I/O	V18	$\mathrm{V}_{\text {PN }}$	$V_{\text {PN }}$	Y10	I/O	I/O
U5	1/0	I/O	V19	TDO	TDO	Y11	I/O	1/0
U6	1/O	I/O	V20	GND	GND	Y12	I/O	1/0

484-Pin FBGA			484-Pin FBGA		
Pin Number	APA450 Function	APA600 Function	Pin Number	APA450 Function	APA600 Function
Y13	I/O	I/O	AB5	I/O	I/O
Y14	$V_{\text {DD }}$	$V_{\text {DD }}$	AB6	I/O	I/O
Y15	$V_{\text {DD }}$	$V_{\text {DD }}$	AB7	I/O	I/O
Y16	I/O	I/O	AB8	1/O	1/O
Y17	1/O	I/O	AB9	1/O	1/O
Y18	GND	GND	AB10	1/0	1/O
Y19	I/O	I/O	AB11	1/O	1/O
Y20	1/0	1/0	AB12	I/O	I/O
Y21	NC	1/O	AB13	1/O	1/0
Y22	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AB14	1/O	1/O
AA1	GND	GND	AB15	1/O	1/0
AA2	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AB16	1/O	1/O
AA3	I/O	I/O	AB17	I/O	1/0
AA4	I/O	1/O	AB18	NC	I/O
AA5	I/O	1/O	AB19	I/O	I/O
AA6	I/O	I/O	AB20	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA7	1/0	1/O	AB21	GND	GND
AA8	1/O	1/O	AB22	GND	GND
AA9	I/O	I/O			
AA10	1/O	I/O			
AA11	I/O	I/O			
AA12	I/O	I/O			
AA13	1/0	I/O			
AA14	I/O	I/O			
AA15	1/O	I/O			
AA16	I/O	I/O			
AA17	I/O	I/O			
AA18	NC	I/O			
AA19	NC	I/O			
AA20	I/O	I/O			
AA21	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$			
AA22	GND	GND			
AB1	GND	GND			
AB2	GND	GND			
AB3	$V_{\text {DDP }}$	$V_{\text {DDP }}$			
AB4	I/O	I/O			

A1 Ball Pad Corner $\&$$7654321$			
O000000000000000000000000			
-0000000000000000000000000			
००००००००००००००००००००००००००			
-००००००००००००००००००००००००			
OOOOOOOOOOOOOOOOOOOOOOOOOO			
००००००००००००००००००००००००००			
-०००००००००००००००००००००००००			
00000000000000000000000000 00000000000000000000000000			
००००००००००००००००००००००००००			

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

676-Pin FBGA			676-Pin FBGA			676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function	Pin Number	APA600 Function	APA750 Function	Pin Number	APA600 Function	APA750 Function
A1	GND	GND	B10	I/O	I/O	C19	I/O	I/O
A2	GND	GND	B11	I/O	I/O	C20	I/O	I/O
A3	I/O	I/O	B12	I/O	I/O	C21	I/O	I/O
A4	I/O	I/O	B13	I/O	I/O	C22	I/O	I/O
A5	I/O	1/0	B14	I/O	I/O	C23	I/O	I/O
A6	I/O	I/O	B15	I/O	I/O	C24	I/O	I/O
A7	I/O	I/O	B16	1/0	I/O	C25	I/O	I/O
A8	1/0	1/O	B17	1/0	I/O	C26	I/O	I/O
A9	1/0	1/0	B18	1/0	1/0	D1	1/O	1/O
A10	1/0	1/0	B19	1/0	1/0	D2	I/O	1/O
A11	1/0	1/O	B20	1/0	1/O	D3	GND	GND
A12	1/0	I/O	B21	1/0	I/O	D4	I/O	I/O
A13	I/O	I/O	B22	I/O	I/O	D5	I/O	I/O
A14	1/0	1/O	B23	1/O	I/O	D6	I/O	I/O
A15	I/O	I/O	B24	I/O	I/O	D7	I/O	I/O
A16	I/O	I/O	B25	GND	GND	D8	I/O	I/O
A17	I/O	I/O	B26	GND	GND	D9	I/O	I/O
A18	1/0	1/0	C1	GND	GND	D10	I/O	I/O
A19	1/O	I/O	C2	GND	GND	D11	I/O	I/O
A20	I/O	I/O	C3	GND	GND	D12	I/O	I/O
A21	I/O	I/O	C4	GND	GND	D13	1/O	1/O
A22	I/O	I/O	C5	I/O	I/O	D14	I/O	I/O
A23	I/O	I/O	C6	1/O	I/O	D15	I/O	I/O
A24	I/O	I/O	C7	I/O	I/O	D16	I/O	I/O
A25	GND	GND	C8	I/O	I/O	D17	I/O	I/O
A26	GND	GND	C9	1/0	I/O	D18	I/O	I/O
B1	GND	GND	C10	I/O	1/O	D19	I/O	I/O
B2	GND	GND	C11	I/O	I/O	D20	I/O	I/O
B3	GND	GND	C12	I/O	I/O	D21	I/O	I/O
B4	GND	GND	C13	1/0	1/0	D22	1/O	1/O
B5	I/O	1/O	C14	I/O	1/O	D23	1/O	1/O
B6	1/0	I/O	C15	I/O	I/O	D24	I/O	I/O
B7	I/O	1/O	C16	I/O	I/O	D25	I/O	I/O
B8	I/O	I/O	C17	I/O	I/O	D26	I/O	I/O
B9	1/0	1/O	C18	1/0	I/O	E1	I/O	I/O

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
E2	I/O	I/O
E3	I/O	I/O
E4	I/O	I/O
E5	1/O	I/O
E6	I/O	I/O
E7	I/O	I/O
E8	1/0	1/0
E9	I/O	I/O
E10	I/O	I/O
E11	I/O	I/O
E12	I/O	I/O
E13	I/O	I/O
E14	I/O	I/O
E15	I/O	I/O
E16	I/O	I/O
E17	1/O	I/O
E18	I/O	I/O
E19	I/O	I/O
E20	1/O	1/O
E21	I/O	I/O
E22	I/O	I/O
E23	I/O	I/O
E24	I/O	I/O
E25	1/O	1/O
E26	1/0	I/O
F1	I/O	I/O
F2	1/O	1/O
F3	I/O	I/O
F4	I/O	I/O
F5	GND	GND
F6	I/O	I/O
F7	NC	NC
F8	1/O	1/O
F9	I/O	1/0
F10	1/O	1/O

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
F11	I/O	I/O
F12	I/O	I/O
F13	1/O	I/O
F14	1/0	I/O
F15	I/O	I/O
F16	I/O	I/O
F17	1/0	1/0
F18	I/O	I/O
F19	I/O	I/O
F20	1/0	1/O
F21	I/O	I/O
F22	I/O	I/O
F23	I/O	I/O
F24	I/O	I/O
F25	I/O	I/O
F26	I/O	I/O
G1	I/O	1/O
G2	1/O	I/O
G3	1/0	I/O
G4	I/O	I/O
G5	I/O	I/O
G6	1/O	I/O
G7	1/0	I/O
G8	$V_{\text {DD }}$	$V_{\text {DD }}$
G9	NC	NC
G10	1/O	I/O
G11	NC	NC
G12	I/O	I/O
G13	NC	NC
G14	I/O	I/O
G15	NC	NC
G16	I/O	I/O
G17	NC	NC
G18	1/O	I/O
G19	$V_{\text {DDP }}$	$V_{\text {DDP }}$

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
G20	NC	NC
G21	I/O	I/O
G22	1/0	I/O
G23	I/O	I/O
G24	1/0	I/O
G25	I/O	I/O
G26	I/O	I/O
H1	1/O	I/O
H2	1/O	I/O
H3	I/O	I/O
H4	I/O	I/O
H5	I/O	I/O
H6	1/0	1/O
H7	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H8	$V_{\text {DD }}$	$V_{\text {DD }}$
H9	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H11	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H12	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H14	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H16	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H19	$V_{D D}$	$V_{D D}$
H20	$V_{\text {DD }}$	$V_{D D}$
H21	I/O	I/O
H22	I/O	I/O
H23	I/O	I/O
H24	I/O	I/O
H25	1/0	1/O
H26	1/0	1/O
J1	1/0	I/O
J2	1/0	1/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

676-Pin FBGA			676-Pin FBGA			676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function	Pin Number	APA600 Function	APA750 Function	Pin Number	APA600 Function	APA750 Function
J3	I/O	I/O	K12	GND	GND	L21	I/O	I/O
J4	I/O	I/O	K13	GND	GND	L22	I/O	I/O
J5	1/O	1/0	K14	GND	GND	L23	I/O	I/O
J6	I/O	I/O	K15	GND	GND	L24	I/O	I/O
J7	NC	NC	K16	GND	GND	L25	I/O	I/O
J8	$V_{\text {DDP }}$	$V_{\text {DDP }}$	K17	GND	GND	L26	I/O	I/O
J9	$V_{\text {DD }}$	$V_{\text {DD }}$	K18	$V_{\text {DD }}$	$V_{\text {DD }}$	M1	I/O	I/O
J10	$V_{\text {DD }}$	$V_{\text {DD }}$	K19	$V_{\text {DDP }}$	$V_{\text {DDP }}$	M2	I/O	I/O
J11	$V_{\text {DD }}$	$V_{\text {DD }}$	K20	I/O	I/O	M3	I/O	I/O
$J 12$	$V_{\text {DD }}$	$V_{\text {DD }}$	K21	I/O	I/O	M4	I/O	I/O
$J 13$	$V_{\text {DD }}$	$V_{\text {DD }}$	K22	I/O	I/O	M5	I/O	I/O
J14	$V_{\text {DD }}$	$V_{\text {DD }}$	K23	I/O	1/0	M6	I/O	1/O
$J 15$	$V_{D D}$	$V_{D D}$	K24	I/O	I/O	M7	I/O	I/O
J16	$V_{\text {DD }}$	$V_{\text {DD }}$	K25	I/O	I/O	M8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
J17	$V_{\text {DD }}$	$V_{\text {DD }}$	K26	I/O	I/O	M9	$V_{\text {DD }}$	$V_{\text {DD }}$
J18	$V_{\text {DD }}$	$V_{\text {DD }}$	L1	I/O	I/O	M10	GND	GND
J19	$V_{\text {DDP }}$	$V_{\text {DDP }}$	L2	I/O	I/O	M11	GND	GND
J20	NC	NC	L3	I/O	I/O	M12	GND	GND
J21	I/O	I/O	L4	I/O	I/O	M13	GND	GND
J22	I/O	I/O	L5	I/O	I/O	M14	GND	GND
J23	I/O	I/O	L6	I/O	I/O	M15	GND	GND
J24	I/O	I/O	L7	NC	NC	M16	GND	GND
J25	I/O	I/O	L8	$V_{\text {DDP }}$	$V_{\text {DDP }}$	M17	GND	GND
J26	I/O	I/O	L9	$V_{\text {DD }}$	$V_{\text {DD }}$	M18	$V_{\text {DD }}$	$V_{\text {DD }}$
K1	1/O	I/O	L10	GND	GND	M19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K2	I/O	I/O	L11	GND	GND	M20	I/O	I/O
K3	I/O	I/O	L12	GND	GND	M21	I/O	I/O
K4	I/O	I/O	L13	GND	GND	M22	I/O	I/O
K5	I/O	I/O	L14	GND	GND	M23	I/O	I/O
K6	I/O	I/O	L15	GND	GND	M24	I/O	I/O
K7	I/O	I/O	L16	GND	GND	M25	I/O	I/O
K8	$V_{\text {DDP }}$	$V_{\text {DDP }}$	L17	GND	GND	M26	I/O	I/O
K9	$V_{D D}$	$V_{D D}$	L18	$V_{D D}$	$V_{D D}$	N1	I/O / GL1	I/O / GL1
K10	GND	GND	L19	$V_{\text {DDP }}$	$V_{\text {DDP }}$	N2	AGND	AGND
K11	GND	GND	L20	NC	NC	N3	I/O / GLMX1	I/O / GLMX1

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
N4	I/O	I/O
N5	NPECL1	NPECL1
N6	I/O	I/O
N7	NC	NC
N8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
N9	$V_{\text {DD }}$	$V_{\text {DD }}$
N10	GND	GND
N11	GND	GND
N12	GND	GND
N13	GND	GND
N14	GND	GND
N15	GND	GND
N16	GND	GND
N17	GND	GND
N18	$V_{\text {DD }}$	$V_{\text {DD }}$
N19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
N20	NC	NC
N21	I/O	I/O
N22	I/O / GL3	I/O / GL3
N23	I/O	I/O
N24	NPECL2	NPECL2
N25	I/O / GL4	I/O / GL4
N26	I/O	I/O
P1	I/O / GL2	I/O / GL2
P2	AVDD	AVDD
P3	I/O	I/O
P4	I/O	I/O
P5	PPECL1 / Input	PPECL1 / Input
P6	I/O	I/O
P7	I/O	1/O
P8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P9	$V_{\text {DD }}$	$V_{\text {DD }}$
P10	GND	GND
P11	GND	GND

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
P12	GND	GND
P13	GND	GND
P14	GND	GND
P15	GND	GND
P16	GND	GND
P17	GND	GND
P18	$V_{\text {DD }}$	$V_{\text {DD }}$
P19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P20	I/O	I/O
P21	1/0	I/O
P22	I/O / GLMX2	I/O / GLMX2
P23	I/O	I/O
P24	$\begin{aligned} & \text { PPECL2 / } \\ & \text { Input } \end{aligned}$	PPECL2 / Input
P25	AVDD	AVDD
P26	AGND	AGND
R1	I/O	I/O
R2	I/O	1/O
R3	I/O	I/O
R4	I/O	I/O
R5	1/0	I/O
R6	I/O	I/O
R7	NC	NC
R8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
R9	$V_{\text {DD }}$	$V_{\text {DD }}$
R10	GND	GND
R11	GND	GND
R12	GND	GND
R13	GND	GND
R14	GND	GND
R15	GND	GND
R16	GND	GND
R17	GND	GND
R18	$\mathrm{V}_{\text {DD }}$	$V_{\text {DD }}$
R19	$V_{\text {DDP }}$	$V_{\text {DDP }}$

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
R20	NC	NC
R21	I/O	I/O
R22	I/O	I/O
R23	I/O	I/O
R24	1/O	1/O
R25	1/0	1/0
R26	1/0	1/0
T1	I/O	I/O
T2	1/O	1/O
T3	1/0	1/0
T4	1/0	1/O
T5	1/0	1/O
T6	1/0	I/O
T7	I/O	1/O
T8	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
T9	$V_{\text {DD }}$	$V_{D D}$
T10	GND	GND
T11	GND	GND
T12	GND	GND
T13	GND	GND
T14	GND	GND
T15	GND	GND
T16	GND	GND
T17	GND	GND
T18	$V_{\text {DD }}$	$V_{\text {DD }}$
T19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
T20	I/O	I/O
T21	1/O	1/0
T22	1/O	1/O
T23	I/O	1/0
T24	1/0	1/0
T25	I/O	I/O
T26	1/0	1/O
U1	I/O	1/0
U2	1/O	1/0

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

676-Pin FBGA			676-Pin FBGA			676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function	Pin Number	APA600 Function	APA750 Function	Pin Number	APA600 Function	APA750 Function
U3	I/O	I/O	V12	$V_{\text {DD }}$	$V_{\text {DD }}$	W21	I/O	I/O
U4	I/O	I/O	V13	$V_{D D}$	$V_{D D}$	W22	I/O	I/O
U5	I/O	I/O	V14	$V_{\text {DD }}$	$V_{\text {DD }}$	W23	I/O	I/O
U6	I/O	I/O	V15	$V_{D D}$	$V_{D D}$	W24	I/O	I/O
U7	NC	NC	V16	$V_{\text {DD }}$	$V_{\text {DD }}$	W25	I/O	I/O
U8	$V_{\text {DDP }}$	$V_{\text {DDP }}$	V17	$V_{\text {DD }}$	$V_{\text {DD }}$	W26	I/O	I/O
U9	$V_{\text {DD }}$	$V_{\text {DD }}$	V18	$V_{\text {DD }}$	$V_{\text {DD }}$	Y1	I/O	I/O
U10	GND	GND	V19	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y2	I/O	1/O
U11	GND	GND	V20	I/O	I/O	Y3	I/O	I/O
U12	GND	GND	V21	I/O	I/O	Y4	I/O	I/O
U13	GND	GND	V22	I/O	I/O	Y5	I/O	I/O
U14	GND	GND	V23	I/O	I/O	Y6	I/O	I/O
U15	GND	GND	V24	I/O	I/O	Y7	I/O	I/O
U16	GND	GND	V25	I/O	I/O	Y8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U17	GND	GND	V26	I/O	I/O	Y9	NC	NC
U18	$V_{\text {DD }}$	$V_{\text {DD }}$	W1	I/O	I/O	Y10	I/O	I/O
U19	$V_{\text {DDP }}$	$V_{\text {DDP }}$	W2	I/O	I/O	Y11	NC	NC
U20	NC	NC	W3	I/O	I/O	Y12	I/O	I/O
U21	I/O	I/O	W4	I/O	I/O	Y13	NC	NC
U22	I/O	1/O	W5	I/O	1/O	Y14	I/O	I/O
U23	I/O	I/O	W6	I/O	I/O	Y15	NC	NC
U24	I/O	1/O	W7	$V_{D D}$	$V_{D D}$	Y16	I/O	I/O
U25	I/O	I/O	W8	$V_{D D}$	$V_{D D}$	Y17	NC	NC
U26	I/O	I/O	W9	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y18	I/O	I/O
V1	I/O	I/O	W10	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y19	$V_{\text {DD }}$	$V_{\text {DD }}$
V2	1/O	I/O	W11	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y20	$V_{\text {PP }}$	$V_{\text {PP }}$
V3	I/O	I/O	W12	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y21	I/O	I/O
V4	1/O	I/O	W13	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y22	I/O	1/O
V5	I/O	I/O	W14	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y23	I/O	I/O
V6	I/O	I/O	W15	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y24	I/O	I/O
V7	I/O	1/O	W16	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y25	I/O	I/O
V8	$V_{\text {DDP }}$	$V_{\text {DDP }}$	W17	$V_{\text {DDP }}$	$V_{\text {DDP }}$	Y26	I/O	I/O
V9	$V_{\text {DD }}$	$V_{\text {DD }}$	W18	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AA1	I/O	I/O
V10	$V_{\text {DD }}$	$V_{\text {DD }}$	W19	$V_{\text {DD }}$	$V_{\text {DD }}$	AA2	I/O	I/O
V11	$V_{\text {DD }}$	$V_{\text {DD }}$	W20	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AA3	I/O	I/O

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
AA4	I/O	I/O
AA5	I/O	1/O
AA6	GND	GND
AA7	I/O	I/O
AA8	I/O	I/O
AA9	I/O	I/O
AA10	I/O	I/O
AA11	I/O	I/O
AA12	I/O	I/O
AA13	I/O	I/O
AA14	1/O	I/O
AA15	I/O	I/O
AA16	I/O	I/O
AA17	I/O	I/O
AA18	I/O	I/O
AA19	I/O	I/O
AA20	I/O	I/O
AA21	TDO	TDO
AA22	GND	GND
AA23	GND	GND
AA24	I/O	I/O
AA25	I/O	I/O
AA26	I/O	I/O
AB1	1/O	I/O
AB2	I/O	I/O
AB3	I/O	I/O
AB4	I/O	I/O
AB5	I/O	I/O
AB6	GND	GND
AB7	GND	GND
AB8	I/O	I/O
AB9	I/O	I/O
AB10	I/O	I/O
AB11	I/O	I/O
AB12	I/O	I/O

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
AB13	I/O	I/O
AB14	I/O	I/O
AB15	I/O	I/O
AB16	I/O	I/O
AB17	1/0	1/O
AB18	1/0	1/0
AB19	1/0	1/0
AB20	I/O	I/O
AB21	TCK	TCK
AB22	TRST	TRST
AB23	I/O	I/O
AB24	I/O	I/O
AB25	I/O	I/O
AB26	1/0	I/O
AC1	1/0	I/O
AC2	1/0	I/O
AC3	I/O	I/O
AC4	I/O	I/O
AC5	GND	GND
AC6	I/O	I/O
AC7	I/O	I/O
AC8	1/O	I/O
AC9	GND	GND
AC10	I/O	I/O
AC11	1/0	1/0
AC12	1/0	1/0
AC13	1/0	I/O
AC14	1/O	I/O
AC15	I/O	I/O
AC16	1/0	I/O
AC17	I/O	I/O
AC18	I/O	I/O
AC19	I/O	I/O
AC20	1/0	1/0
AC21	1/0	I/O

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
AC22	TMS	TMS
AC23	RCK	RCK
AC24	I/O	I/O
AC25	I/O	I/O
AC26	1/0	I/O
AD1	1/0	1/O
AD2	I/O	I/O
AD3	1/O	I/O
AD4	I/O	I/O
AD5	I/O	I/O
AD6	I/O	I/O
AD7	I/O	I/O
AD8	1/0	1/0
AD9	1/0	I/O
AD10	1/0	I/O
AD11	1/0	1/O
AD12	I/O	I/O
AD13	1/0	I/O
AD14	1/0	1/O
AD15	1/0	I/O
AD16	I/O	I/O
AD17	1/0	I/O
AD18	1/0	1/O
AD19	1/0	1/O
AD20	1/0	1/O
AD21	1/0	I/O
AD22	1/O	I/O
AD23	TDI	TDI
AD24	V_{PN}	$\mathrm{V}_{\text {PN }}$
AD25	I/O	I/O
AD26	I/O	I/O
AE1	GND	GND
AE2	GND	GND
AE3	GND	GND
AE4	I/O	I/O

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
AE5	I/O	I/O
AE6	I/O	I/O
AE7	I/O	I/O
AE8	I/O	I/O
AE9	1/O	1/O
AE10	I/O	1/O
AE11	I/O	I/O
AE12	I/O	I/O
AE13	I/O	I/O
AE14	I/O	I/O
AE15	I/O	1/O
AE16	1/0	I/O
AE17	I/O	I/O
AE18	I/O	1/O
AE19	I/O	I/O
AE20	1/O	I/O
AE21	I/O	I/O
AE22	I/O	I/O
AE23	I/O	1/0
AE24	I/O	I/O
AE25	GND	GND
AE26	GND	GND
AF1	GND	GND
AF2	GND	GND
AF3	GND	GND
AF4	GND	GND
AF5	I/O	I/O
AF6	1/0	1/O
AF7	I/O	I/O
AF8	1/O	1/0
AF9	1/O	1/O
AF10	I/O	I/O
AF11	1/O	1/O
AF12	I/O	1/0
AF13	1/O	1/O

676-Pin FBGA		
Pin Number	APA600 Function	APA750 Function
AF14	I/O	I/O
AF15	I/O	I/O
AF16	I/O	I/O
AF17	I/O	I/O
AF18	I/O	I/O
AF19	I/O	I/O
AF20	I/O	I/O
AF21	I/O	I/O
AF22	I/O	I/O
AF23	I/O	I/O
AF24	I/O	I/O
AF25	GND	GND
AF26	GND	GND

\qquad

896-Pin FBGA

302928272625242322212019181716151413121110987654321	7
	A
000000000000000000000000000000	B
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	C
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	D
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	E
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	F
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	G
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	H
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	J
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	K
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	L
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	M
O00000000000000000000000000000	N
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	P
OOOOOOOOOOOOOOO, OOOOOOOOOOOOOO	R
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	T
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	U
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	V
	W
-00000000000000000000000000000	AA
OOOOOOOOOOOOOOOOOOOOOOOOOOOO00	$A B$
OOOOOOOOOOOOOOOOOOOOOOOOOOOO00	$A C$
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	AD
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	AE
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	AF
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	
	AH
	AJ
	AK

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

896-Pin FBGA			896-Pin FBGA			896-Pin FBGA		
Pin Number	APA750 Function	APA 1000 Function	Pin Number	APA750 Function	APA 1000 Function	Pin Number	APA750 Function	APA1000 Function
A2	GND	GND	B7	I/O	I/O	C11	I/O	I/O
A3	GND	GND	B8	I/O	I/O	C12	I/O	I/O
A4	I/O	I/O	B9	I/O	I/O	C13	I/O	I/O
A5	GND	GND	B10	I/O	I/O	C14	I/O	I/O
A6	I/O	I/O	B11	I/O	I/O	C15	I/O	I/O
A7	GND	GND	B12	I/O	I/O	C16	I/O	I/O
A8	I/O	I/O	B13	1/0	1/0	C17	I/O	I/O
A9	I/O	I/O	B14	I/O	I/O	C18	I/O	I/O
A10	I/O	I/O	B15	I/O	I/O	C19	I/O	I/O
A11	1/0	I/O	B16	1/0	I/O	C20	I/O	I/O
A12	I/O	I/O	B17	I/O	I/O	C21	I/O	I/O
A13	I/O	I/O	B18	I/O	I/O	C22	I/O	I/O
A14	I/O	I/O	B19	I/O	I/O	C23	I/O	I/O
A15	I/O	1/O	B20	1/0	I/O	C24	I/O	I/O
A16	I/O	I/O	B21	I/O	I/O	C25	I/O	I/O
A17	1/0	I/O	B22	1/0	I/O	C26	$V_{\text {DDP }}$	$V_{\text {DDP }}$
A18	I/O	I/O	B23	I/O	I/O	C27	I/O	I/O
A19	1/O	1/O	B24	1/O	I/O	C28	$V_{\text {DD }}$	$V_{D D}$
A20	1/0	I/O	B25	$V_{\text {DD }}$	$V_{\text {DD }}$	C29	NC	I/O
A21	I/O	I/O	B26	I/O	I/O	C30	GND	GND
A22	1/O	1/O	B27	$V_{\text {DD }}$	$V_{\text {DD }}$	D1	I/O	I/O
A23	I/O	I/O	B28	I/O	I/O	D2	$V_{\text {DD }}$	$V_{\text {DD }}$
A24	GND	GND	B29	GND	GND	D3	I/O	I/O
A25	I/O	I/O	B30	GND	GND	D4	GND	GND
A26	GND	GND	C1	GND	GND	D5	I/O	I/O
A27	I/O	I/O	C2	I/O	1/0	D6	I/O	I/O
A28	GND	GND	C3	$V_{\text {DD }}$	$V_{\text {DD }}$	D7	I/O	I/O
A29	GND	GND	C4	I/O	I/O	D8	I/O	I/O
B1	GND	GND	C5	$V_{\text {DDP }}$	$V_{\text {DDP }}$	D9	I/O	I/O
B2	GND	GND	C6	I/O	I/O	D10	I/O	I/O
B3	I/O	1/O	C7	I/O	I/O	D11	I/O	I/O
B4	$V_{\text {DD }}$	$V_{\text {DD }}$	C8	I/O	I/O	D12	I/O	I/O
B5	I/O	I/O	C9	1/0	1/0	D13	I/O	I/O
B6	$V_{D D}$	$V_{D D}$	C10	I/O	I/O	D14	I/O	I/O

896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function
D15	I/O	I/O
D16	I/O	I/O
D17	I/O	I/O
D18	I/O	I/O
D19	I/O	I/O
D20	I/O	I/O
D21	I/O	I/O
D22	I/O	I/O
D23	I/O	I/O
D24	I/O	I/O
D25	I/O	I/O
D26	I/O	I/O
D27	GND	GND
D28	I/O	I/O
D29	$V_{\text {DD }}$	$V_{\text {DD }}$
D30	I/O	I/O
E1	GND	GND
E2	I/O	I/O
E3	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E4	I/O	I/O
E5	$V_{D D}$	$V_{\text {DD }}$
E6	I/O	I/O
E7	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
E8	I/O	I/O
E9	I/O	I/O
E10	I/O	I/O
E11	I/O	I/O
E12	I/O	I/O
E13	I/O	I/O
E14	I/O	I/O
E15	I/O	I/O
E16	I/O	I/O
E17	I/O	I/O
E18	I/O	I/O

896-Pin FBGA		
Pin Number	APA750 Function	APA 1000 Function
E19	I/O	I/O
E20	I/O	I/O
E21	I/O	I/O
E22	1/0	1/O
E23	I/O	I/O
E24	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E25	I/O	I/O
E26	$V_{D D}$	$V_{D D}$
E27	I/O	I/O
E28	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E29	I/O	I/O
E30	GND	GND
F1	1/0	I/O
F2	$V_{\text {DD }}$	$V_{\text {DD }}$
F3	I/O	I/O
F4	I/O	1/O
F5	I/O	I/O
F6	GND	GND
F7	I/O	I/O
F8	I/O	I/O
F9	1/0	I/O
F10	I/O	I/O
F11	1/0	I/O
F12	I/O	I/O
F13	I/O	I/O
F14	I/O	I/O
F15	1/0	I/O
F16	1/0	I/O
F17	I/O	I/O
F18	1/0	I/O
F19	1/0	I/O
F20	I/O	I/O
F21	I/O	I/O
F22	I/O	I/O

896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function
F23	I/O	I/O
F24	I/O	I/O
F25	GND	GND
F26	I/O	I/O
F27	I/O	I/O
F28	I/O	I/O
F29	$V_{D D}$	$V_{\text {DD }}$
F30	I/O	I/O
G1	GND	GND
G2	I/O	I/O
G3	1/O	I/O
G4	I/O	I/O
G5	$V_{\text {DDP }}$	$V_{\text {DDP }}$
G6	I/O	I/O
G7	$V_{D D}$	$V_{\text {DD }}$
G8	I/O	I/O
G9	$V_{\text {DDP }}$	$V_{\text {DDP }}$
G10	I/O	I/O
G11	I/O	I/O
G12	I/O	I/O
G13	I/O	I/O
G14	I/O	I/O
G15	I/O	I/O
G16	I/O	I/O
G17	I/O	I/O
G18	I/O	I/O
G19	I/O	I/O
G20	I/O	I/O
G21	I/O	I/O
G22	$V_{\text {DDP }}$	$V_{\text {DDP }}$
G23	I/O	I/O
G24	$V_{D D}$	$V_{D D}$
G25	I/O	I/O
G26	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

896-Pin FBGA			896-Pin FBGA			896-Pin FBGA		
Pin Number	APA750 Function	APA 1000 Function	Pin Number	APA750 Function	APA 1000 Function	Pin Number	APA750 Function	APA1000 Function
G27	I/O	I/O	J1	I/O	I/O	K5	I/O	I/O
G28	I/O	I/O	J2	I/O	I/O	K6	I/O	I/O
G29	I/O	I/O	J3	I/O	I/O	K7	I/O	I/O
G30	GND	GND	J4	1/O	I/O	K8	I/O	1/0
H1	I/O	I/O	J5	1/0	I/O	K9	NC	1/O
H2	I/O	I/O	J6	I/O	I/O	K10	$V_{\text {DD }}$	$V_{\text {DD }}$
H3	1/0	I/O	J7	$V_{\text {DDP }}$	$V_{\text {DDP }}$	K11	NC	I/O
H4	I/O	I/O	J8	I/O	I/O	K12	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H5	I/O	I/O	J9	$V_{\text {DD }}$	$V_{\text {DD }}$	K13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H6	I/O	I/O	J10	NC	I/O	K14	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H7	I/O	I/O	J11	NC	I/O	K15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H8	GND	GND	$J 12$	NC	I/O	K16	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H9	NC	I/O	$J 13$	NC	1/O	K17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H10	NC	I/O	J14	NC	I/O	K18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H11	NC	I/O	$J 15$	NC	I/O	K19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H12	NC	I/O	J16	NC	I/O	K20	NC	I/O
H13	NC	I/O	J17	NC	I/O	K21	$V_{\text {DD }}$	$V_{\text {DD }}$
H14	NC	I/O	$J 18$	NC	I/O	K22	NC	I/O
H15	NC	I/O	J19	NC	1/0	K23	I/O	I/O
H16	NC	I/O	J20	NC	I/O	K24	I/O	I/O
H17	NC	I/O	J21	NC	I/O	K25	I/O	I/O
H18	NC	I/O	J22	$V_{\text {DD }}$	$V_{\text {DD }}$	K26	I/O	I/O
H19	NC	I/O	J23	I/O	I/O	K27	I/O	I/O
H2O	NC	I/O	J24	$V_{\text {DDP }}$	$V_{\text {DDP }}$	K28	I/O	I/O
H21	NC	I/O	J25	I/O	I/O	K29	I/O	I/O
H22	NC	I/O	J26	1/0	1/0	K30	I/O	I/O
H23	GND	GND	J27	I/O	I/O	L1	I/O	I/O
H24	I/O	1/O	J28	1/0	I/O	L2	I/O	I/O
H25	1/O	1/O	J29	1/0	1/0	L3	I/O	1/O
H26	1/0	1/0	J30	1/0	I/O	L4	I/O	1/O
H27	I/O	I/O	K1	1/0	I/O	L5	I/O	I/O
H28	I/O	I/O	K2	I/O	I/O	L6	I/O	I/O
H29	I/O	I/O	K3	I/O	I/O	L7	I/O	I/O
H30	I/O	1/0	K4	I/O	I/O	L8	I/O	I/O

896-Pin FBGA		
Pin Number	APA750 Function	APA 1000 Function
L9	NC	I/O
L10	NC	I/O
L11	$V_{D D}$	$V_{D D}$
L12	$V_{\text {DD }}$	$V_{\text {DD }}$
L13	$V_{D D}$	$V_{D D}$
L14	$V_{\text {DD }}$	$V_{\text {DD }}$
L15	$V_{\text {DD }}$	$V_{\text {DD }}$
L16	$V_{\text {DD }}$	$V_{\text {DD }}$
L17	$V_{\text {DD }}$	$V_{\text {DD }}$
L18	$V_{\text {DD }}$	$V_{\text {DD }}$
L19	$V_{\text {DD }}$	$V_{\text {DD }}$
L20	$V_{\text {DD }}$	$V_{\text {DD }}$
L21	NC	I/O
L22	NC	I/O
L23	I/O	I/O
L24	1/O	I/O
L25	I/O	I/O
L26	I/O	I/O
L27	I/O	I/O
L28	I/O	I/O
L29	I/O	I/O
L30	1/O	I/O
M1	I/O	I/O
M2	I/O	1/O
M3	I/O	I/O
M4	I/O	I/O
M5	I/O	I/O
M6	I/O	I/O
M7	I/O	I/O
M8	I/O	I/O
M9	NC	I/O
M10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M11	$V_{D D}$	$V_{\text {DD }}$
M12	GND	GND

896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function
M13	GND	GND
M14	GND	GND
M15	GND	GND
M16	GND	GND
M17	GND	GND
M18	GND	GND
M19	GND	GND
M20	$V_{\text {DD }}$	$V_{\text {DD }}$
M21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M22	NC	I/O
M23	I/O	I/O
M24	I/O	I/O
M25	I/O	I/O
M26	I/O	I/O
M27	I/O	I/O
M28	I/O	I/O
M29	I/O	I/O
M30	I/O	I/O
N1	I/O	I/O
N2	I/O	I/O
N3	I/O	I/O
N4	I/O	I/O
N5	I/O	I/O
N6	I/O	I/O
N7	I/O	I/O
N8	I/O	I/O
N9	NC	I/O
N10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
N11	$V_{\text {DD }}$	$V_{\text {DD }}$
N12	GND	GND
N13	GND	GND
N14	GND	GND
N15	GND	GND
N16	GND	GND

896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function
N17	GND	GND
N18	GND	GND
N19	GND	GND
N20	$V_{D D}$	$V_{\text {DD }}$
N21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
N22	NC	I/O
N23	I/O	I/O
N24	I/O	I/O
N25	I/O	I/O
N26	I/O	I/O
N27	I/O	I/O
N28	I/O	I/O
N29	I/O	I/O
N30	I/O	I/O
P1	I/O	1/O
P2	I/O	I/O
P3	I/O	I/O
P4	I/O	I/O
P5	I/O	I/O
P6	I/O	I/O
P7	I/O	I/O
P8	I/O	I/O
P9	I/O	I/O
P10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P11	$V_{\text {DD }}$	$V_{D D}$
P12	GND	GND
P13	GND	GND
P14	GND	GND
P15	GND	GND
P16	GND	GND
P17	GND	GND
P18	GND	GND
P19	GND	GND
P20	$V_{D D}$	$V_{\text {DD }}$

896-Pin FBGA			896-Pin FBGA			896-Pin FBGA		
Pin Number	APA750 Function	APA 1000 Function	Pin Number	APA750 Function	APA 1000 Function	Pin Number	APA750 Function	APA1000 Function
P21	$V_{\text {DDP }}$	$V_{\text {DDP }}$	R25	I/O	I/O	T29	AVDD	AVDD
P22	I/O	I/O	R26	1/O	I/O	T30	I/O	I/O
P23	1/0	1/0	R27	NPECL2	NPECL2	U1	1/0	1/0
P24	1/O	I/O	R28	AGND	AGND	U2	I/O	1/O
P25	1/0	I/O	R29	I/O / GLMX2	I/O / GLMX2	U3	I/O	1/0
P26	I/O	1/0	R30	I/O	I/O	U4	1/O	1/0
P27	I/O	1/O	T1	1/O	1/O	U5	1/O	1/0
P28	1/0	I/O	T2	AVDD	AVDD	U6	I/O	1/0
P29	I/O	I/O	T3	I/O / GL2	I/O / GL2	U7	1/O	I/O
P30	I/O	I/O	T4	PPECL1 / Input	PPECL1 / Input	U8	1/O	1/0
R1	I/O	I/O	T5	I/O	I/O	U9	NC	I/O
R2	I/O / GLMX1	I/O / GLMX1	T6	1/O	I/O	U10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
R3	AGND	AGND	T7	I/O	I/O	U11	$V_{\text {DD }}$	$V_{\text {DD }}$
R4	NPECL1	NPECL1	T8	I/O	I/O	U12	GND	GND
R5	I/O / GL1	I/O / GL1	T9	1/O	I/O	U13	GND	GND
R6	I/O	I/O	T10	$V_{\text {DDP }}$	$V_{\text {DDP }}$	U14	GND	GND
R7	I/O	I/O	T11	$V_{\text {DD }}$	$V_{\text {DD }}$	U15	GND	GND
R8	I/O	I/O	T12	GND	GND	U16	GND	GND
R9	NC	I/O	T13	GND	GND	U17	GND	GND
R10	$V_{\text {DDP }}$	$V_{\text {DDP }}$	T14	GND	GND	U18	GND	GND
R11	$V_{\text {DD }}$	$V_{D D}$	T15	GND	GND	U19	GND	GND
R12	GND	GND	T16	GND	GND	U20	$V_{\text {DD }}$	$V_{\text {DD }}$
R13	GND	GND	T17	GND	GND	U21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
R14	GND	GND	T18	GND	GND	U22	NC	I/O
R15	GND	GND	T19	GND	GND	U23	I/O	1/O
R16	GND	GND	T20	$V_{\text {DD }}$	$V_{\text {DD }}$	U24	I/O	1/O
R17	GND	GND	T21	$V_{\text {DDP }}$	$V_{\text {DDP }}$	U25	I/O	1/0
R18	GND	GND	T22	I/O	I/O	U26	I/O	1/O
R19	GND	GND	T23	I/O	I/O	U27	I/O	1/O
R20	$V_{\text {DD }}$	$V_{\text {DD }}$	T24	I/O	I/O	U28	I/O	I/O
R21	$V_{\text {DDP }}$	$V_{\text {DDP }}$	T25	1/O	1/0	U29	I/O	1/0
R22	I/O	I/O	T26	PPECL2 / Input	PPECL2 / Input	U30	I/O	I/O
R23	I/O	I/O	T27	I/O / GL4	I/O / GL4	V1	1/0	1/0
R24	1/0	I/O	T28	I/O / GL3	I/O / GL3	V2	I/O	1/O

896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function
V3	I/O	I/O
V4	I/O	I/O
V5	I/O	I/O
V6	I/O	I/O
V7	I/O	I/O
V8	I/O	I/O
V9	NC	I/O
V10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V11	$V_{\text {DD }}$	$V_{\text {DD }}$
V12	GND	GND
V13	GND	GND
V14	GND	GND
V15	GND	GND
V16	GND	GND
V17	GND	GND
V18	GND	GND
V19	GND	GND
V20	$V_{D D}$	$V_{\text {DD }}$
V21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V22	NC	I/O
V23	I/O	I/O
V24	I/O	I/O
V25	I/O	I/O
V26	1/O	I/O
V27	I/O	I/O
V28	I/O	I/O
V29	I/O	I/O
V30	I/O	I/O
W1	I/O	I/O
W2	I/O	I/O
W3	1/0	1/0
W4	I/O	I/O
W5	I/O	I/O
W6	I/O	I/O

896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function
W7	I/O	I/O
W8	I/O	I/O
W9	NC	I/O
W10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
W11	$V_{D D}$	$V_{D D}$
W12	GND	GND
W13	GND	GND
W14	GND	GND
W15	GND	GND
W16	GND	GND
W17	GND	GND
W18	GND	GND
W19	GND	GND
W20	$V_{\text {DD }}$	$V_{\text {DD }}$
W21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
W22	NC	I/O
W23	I/O	I/O
W24	I/O	I/O
W25	1/O	I/O
W26	I/O	1/O
W27	I/O	I/O
W28	1/O	I/O
W29	1/O	1/O
W30	I/O	I/O
Y1	1/0	I/O
Y2	I/O	I/O
Y3	I/O	I/O
Y4	I/O	I/O
Y5	I/O	I/O
Y6	I/O	I/O
Y7	I/O	I/O
Y8	I/O	I/O
Y9	NC	I/O
Y10	NC	I/O

896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function
Y11	$V_{\text {DD }}$	$V_{\text {DD }}$
Y12	$V_{\text {DD }}$	$V_{\text {DD }}$
Y13	$V_{\text {DD }}$	$V_{\text {DD }}$
Y14	$V_{\text {DD }}$	$V_{\text {DD }}$
Y15	$V_{\text {DD }}$	$V_{\text {DD }}$
Y16	$V_{\text {DD }}$	$V_{\text {DD }}$
Y17	$V_{\text {DD }}$	$V_{D D}$
Y18	$V_{\text {DD }}$	$V_{\text {DD }}$
Y19	$V_{\text {DD }}$	$V_{\text {DD }}$
Y20	$V_{\text {DD }}$	$V_{\text {DD }}$
Y21	NC	I/O
Y22	NC	I/O
Y23	I/O	I/O
Y24	I/O	I/O
Y25	I/O	I/O
Y26	I/O	I/O
Y27	I/O	I/O
Y28	I/O	1/O
Y29	I/O	I/O
Y30	I/O	I/O
AA1	I/O	1/O
AA2	I/O	I/O
AA3	I/O	1/O
AA4	1/0	1/O
AA5	I/O	I/O
AA6	1/O	1/O
AA7	1/0	1/O
AA8	I/O	I/O
AA9	NC	1/O
AA10	$V_{\text {DD }}$	$V_{\text {DD }}$
AA11	NC	I/O
AA12	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA14	$V_{\text {DDP }}$	$V_{\text {DDP }}$

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

896-Pin FBGA			896-Pin FBGA			896-Pin FBGA		
Pin Number	APA750 Function	APA 1000 Function	Pin Number	APA750 Function	APA1000 Function	Pin Number	APA750 Function	APA1000 Function
AA15	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AB19	NC	I/O	AC23	GND	GND
AA16	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AB20	NC	1/0	AC24	I/O	I/O
AA17	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AB21	NC	1/0	AC25	1/O	1/0
AA18	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AB22	$V_{D D}$	$V_{D D}$	AC26	1/0	1/0
AA19	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AB23	I/O	I/O	AC27	I/O	I/O
AA20	NC	I/O	AB24	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AC28	I/O	I/O
AA21	$V_{D D}$	$V_{\text {DD }}$	AB25	I/O	I/O	AC29	1/O	1/0
AA22	NC	I/O	AB26	I/O	I/O	AC30	I/O	I/O
AA23	I/O	I/O	AB27	I/O	I/O	AD1	GND	GND
AA24	I/O	I/O	AB28	1/O	I/O	AD2	I/O	I/O
AA25	1/0	I/O	AB29	I/O	I/O	AD3	I/O	1/0
AA26	I/O	I/O	AB30	I/O	I/O	AD4	I/O	I/O
AA27	1/O	I/O	AC1	1/O	I/O	AD5	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA28	I/O	I/O	AC2	I/O	I/O	AD6	I/O	I/O
AA29	I/O	I/O	AC3	I/O	I/O	AD7	$V_{D D}$	$V_{D D}$
AA30	I/O	I/O	AC4	I/O	I/O	AD8	I/O	I/O
AB1	I/O	I/O	AC5	I/O	I/O	AD9	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AB2	I/O	I/O	AC6	I/O	I/O	AD10	I/O	I/O
AB3	1/0	I/O	AC7	I/O	I/O	AD11	I/O	I/O
AB4	I/O	I/O	AC8	GND	GND	AD12	I/O	I/O
AB5	I/O	I/O	AC9	NC	I/O	AD13	I/O	I/O
AB6	1/O	I/O	AC10	NC	I/O	AD14	I/O	I/O
AB7	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AC11	NC	I/O	AD15	I/O	1/O
AB8	I/O	I/O	AC12	NC	I/O	AD16	I/O	1/O
AB9	$V_{D D}$	$V_{\text {DD }}$	AC13	NC	I/O	AD17	I/O	I/O
AB10	NC	I/O	AC14	NC	I/O	AD18	I/O	1/O
AB11	NC	1/0	AC15	NC	I/O	AD19	I/O	1/O
AB12	NC	1/O	AC16	NC	I/O	AD20	I/O	1/O
AB13	NC	1/O	AC17	NC	I/O	AD21	1/O	1/O
AB14	NC	I/O	AC18	NC	I/O	AD22	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AB15	NC	I/O	AC19	NC	I/O	AD23	TCK	TCK
AB16	NC	I/O	AC20	NC	I/O	AD24	$V_{\text {DD }}$	$V_{\text {DD }}$
AB17	NC	1/0	AC21	NC	I/O	AD25	TRST	TRST
AB18	NC	I/O	AC22	NC	I/O	AD26	$V_{\text {DDP }}$	$V_{\text {DDP }}$

896-Pin FBGA		
Pin Number	APA750 Function	APA 1000 Function
AD27	I/O	I/O
AD28	I/O	I/O
AD29	I/O	I/O
AD30	GND	GND
AE1	I/O	I/O
AE2	$V_{\text {DD }}$	$V_{\text {DD }}$
AE3	I/O	I/O
AE4	I/O	I/O
AE5	I/O	I/O
AE6	GND	GND
AE7	I/O	I/O
AE8	I/O	I/O
AE9	I/O	I/O
AE10	I/O	I/O
AE11	I/O	I/O
AE12	I/O	I/O
AE13	I/O	I/O
AE14	I/O	I/O
AE15	I/O	I/O
AE16	I/O	I/O
AE17	I/O	I/O
AE18	I/O	I/O
AE19	I/O	I/O
AE20	I/O	I/O
AE2 1	I/O	I/O
AE22	I/O	I/O
AE23	I/O	I/O
AE24	I/O	I/O
AE25	GND	GND
AE26	I/O	I/O
AE27	I/O	I/O
AE28	I/O	I/O
AE29	$V_{D D}$	$V_{D D}$
AE30	I/O	I/O

896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function
AF1	GND	GND
AF2	I/O	I/O
AF3	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AF4	I/O	I/O
AF5	$V_{\text {DD }}$	$V_{\text {DD }}$
AF6	I/O	I/O
AF7	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AF8	I/O	I/O
AF9	1/O	1/0
AF10	I/O	I/O
AF11	I/O	I/O
AF12	I/O	I/O
AF13	I/O	I/O
AF14	I/O	I/O
AF15	I/O	I/O
AF16	I/O	I/O
AF17	I/O	I/O
AF18	I/O	I/O
AF19	1/O	1/0
AF20	I/O	I/O
AF2 1	I/O	I/O
AF22	1/0	I/O
AF23	1/0	1/O
AF24	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AF25	I/O	I/O
AF26	$V_{\text {DD }}$	$V_{\text {DD }}$
AF27	TDO	TDO
AF28	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AF29	$V_{\text {PN }}$	$V_{\text {PN }}$
AF30	GND	GND
AG1	I/O	I/O
AG2	$V_{\text {DD }}$	$V_{\text {DD }}$
AG3	I/O	I/O
AG4	GND	GND

896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function
AG5	I/O	I/O
AG6	I/O	I/O
AG7	I/O	I/O
AG8	I/O	I/O
AG9	I/O	I/O
AG10	I/O	1/O
AG11	I/O	1/0
AG12	I/O	1/O
AG13	I/O	I/O
AG14	I/O	1/0
AG15	I/O	1/0
AG16	I/O	I/O
AG17	I/O	1/O
AG18	I/O	1/0
AG19	I/O	I/O
AG20	I/O	1/0
AG21	1/0	I/O
AG22	I/O	I/O
AG23	1/O	I/O
AG24	I/O	I/O
AG25	1/O	1/O
AG26	I/O	I/O
AG27	GND	GND
AG28	RCK	RCK
AG29	$V_{\text {DD }}$	$V_{\text {DD }}$
AG30	I/O	I/O
AH1	GND	GND
AH2	1/0	I/O
AH3	$V_{\text {DD }}$	$V_{\text {DD }}$
AH4	I/O	I/O
AH5	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AH6	I/O	I/O
AH7	1/0	1/0
AH8	I/O	1/0

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

896-Pin FBGA			896-Pin FBGA			896-Pin FBGA		
Pin Number	APA750 Function	APA1000 Function	Pin Number	APA750 Function	APA1000 Function	Pin Number	APA750 Function	APA1000 Function
AH9	I/O	I/O	AJ13	I/O	I/O	AK18	I/O	I/O
AH10	I/O	I/O	AJ14	I/O	I/O	AK19	I/O	I/O
AH11	I/O	I/O	AJ15	I/O	I/O	AK20	I/O	I/O
AH12	I/O	I/O	AJ16	I/O	I/O	AK21	I/O	I/O
AH13	I/O	I/O	AJ17	I/O	I/O	AK22	I/O	I/O
AH14	I/O	I/O	AJ18	I/O	I/O	AK23	I/O	I/O
AH15	I/O	I/O	AJ19	I/O	I/O	AK24	GND	GND
AH16	I/O	I/O	AJ20	I/O	I/O	AK25	I/O	I/O
AH17	I/O	I/O	AJ21	I/O	I/O	AK26	GND	GND
AH18	I/O	I/O	AJ22	I/O	I/O	AK27	I/O	I/O
AH19	I/O	I/O	AJ23	I/O	I/O	AK28	GND	GND
AH20	I/O	I/O	AJ24	I/O	I/O	AK29	GND	GND
AH21	I/O	I/O	AJ25	$V_{\text {DD }}$	$V_{\text {DD }}$			
AH22	I/O	I/O	AJ26	I/O	I/O			
AH23	1/O	1/0	AJ27	$V_{D D}$	$V_{D D}$			
AH24	I/O	I/O	AJ28	TMS	TMS			
AH25	1/O	I/O	AJ29	GND	GND			
AH26	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AJ30	GND	GND			
AH27	TDI	TDI	AK2	GND	GND			
AH28	$V_{\text {DD }}$	$V_{\text {DD }}$	AK3	GND	GND			
AH29	$V_{\text {PP }}$	$V_{\text {PP }}$	AK4	I/O	I/O			
AH30	GND	GND	AK5	GND	GND			
AJ1	GND	GND	AK6	I/O	I/O			
AJ2	GND	GND	AK7	GND	GND			
AJ3	I/O	1/O	AK8	I/O	I/O			
AJ4	$V_{D D}$	$V_{\text {DD }}$	AK9	I/O	I/O			
AJ5	I/O	I/O	AK10	I/O	I/O			
AJ6	$V_{\text {DD }}$	$V_{D D}$	AK11	I/O	I/O			
AJ7	I/O	I/O	AK12	I/O	I/O			
AJ8	I/O	I/O	AK13	I/O	I/O			
AJ9	I/O	1/O	AK14	1/O	1/O			
AJ10	I/O	I/O	AK15	I/O	I/O			
AJ11	I/O	I/O	AK16	I/O	I/O			
AJ12	I/O	I/O	AK17	I/O	I/O			

1152-Pin FBGA

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA	
Pin Number	APA1000 Function						
A2	NC	B6	NC	C9	GND	D12	I/O
A3	GND	B7	I/O	C10	I/O	D13	I/O
A4	GND	B8	NC	C11	1/0	D14	I/O
A5	GND	B9	I/O	C12	1/0	D15	I/O
A6	I/O	B10	NC	C13	1/O	D16	I/O
A7	$V_{\text {DD }}$	B11	I/O	C14	1/O	D17	I/O
A8	$V_{\text {DD }}$	B12	GND	C15	1/O	D18	I/O
A9	$V_{\text {DD }}$	B13	I/O	C16	I/O	D19	I/O
A10	$V_{D D}$	B14	$V_{\text {DDP }}$	C17	1/O	D20	I/O
A11	I/O	B15	$V_{\text {DDP }}$	C18	1/O	D21	I/O
A12	GND	B16	I/O	C19	I/O	D22	I/O
A13	I/O	B17	GND	C20	I/O	D23	1/O
A14	$V_{\text {DDP }}$	B18	GND	C21	I/O	D24	I/O
A15	$V_{\text {DDP }}$	B19	I/O	C22	1/O	D25	I/O
A16	I/O	B20	$V_{\text {DDP }}$	C23	1/0	D26	I/O
A17	GND	B21	$V_{\text {DDP }}$	C24	I/O	D27	$V_{\text {DD }}$
A18	GND	B22	I/O	C25	I/O	D28	I/O
A19	I/O	B23	GND	C26	GND	D29	$V_{\text {DD }}$
A20	$V_{\text {DDP }}$	B24	I/O	C27	I/O	D30	I/O
A21	$V_{\text {DDP }}$	B25	NC	C28	GND	D31	GND
A22	I/O	B26	I/O	C29	I/O	D32	GND
A23	GND	B27	NC	C30	GND	D33	GND
A24	I/O	B28	I/O	C31	GND	D34	GND
A25	$V_{\text {DD }}$	B29	NC	C32	NC	E1	GND
A26	$V_{\text {DD }}$	B30	GND	C33	GND	E2	GND
A27	$V_{D D}$	B31	GND	C34	GND	E3	GND
A28	$V_{D D}$	B32	GND	D1	GND	E4	I/O
A29	I/O	B33	NC	D2	GND	E5	$V_{\text {DD }}$
A30	GND	B34	NC	D3	GND	E6	I/O
A31	GND	C1	GND	D4	GND	E7	$\mathrm{V}_{\text {DDP }}$
A32	GND	C2	GND	D5	I/O	E8	I/O
A33	NC	C3	NC	D6	$V_{\text {DD }}$	E9	I/O
B1	NC	C4	GND	D7	I/O	E10	I/O
B2	NC	C5	GND	D8	$V_{\text {DD }}$	E11	1/0
B3	GND	C6	I/O	D9	I/O	E12	I/O
B4	GND	C7	GND	D10	I/O	E13	I/O
B5	GND	C8	I/O	D11	1/0	E14	1/O

1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA	
Pin Number	APA1000 Function	Pin Number	APA 1000 Function	Pin Number	APA1000 Function	Pin Number	APA1000 Function
E15	I/O	F18	I/O	G21	I/O	H24	I/O
E16	I/O	F19	1/O	G22	1/O	H25	I/O
E17	I/O	F20	1/O	G23	1/O	H26	I/O
E18	1/0	F21	I/O	G24	1/O	H27	GND
E19	1/O	F22	I/O	G25	1/O	H28	I/O
E20	1/0	F23	1/0	G26	$V_{\text {DDP }}$	H29	I/O
E21	I/O	F24	I/O	G27	I/O	H30	I/O
E22	1/0	F25	1/O	G28	$V_{D D}$	H31	$V_{\text {DD }}$
E23	1/0	F26	1/0	G29	I/O	H32	I/O
E24	I/O	F27	I/O	G30	$V_{\text {DDP }}$	H33	NC
E25	1/O	F28	I/O	G31	I/O	H34	$V_{\text {DD }}$
E26	I/O	F29	GND	G32	GND	J1	$V_{\text {DD }}$
E27	I/O	F30	I/O	G33	I/O	J2	I/O
E28	$V_{\text {DDP }}$	F31	$V_{\text {DD }}$	G34	$V_{\text {DD }}$	J3	GND
E29	I/O	F32	I/O	H1	$V_{\text {DD }}$	J4	I/O
E30	V_{DD}	F33	NC	H2	NC	J5	I/O
E31	I/O	F34	NC	H3	I/O	J6	1/O
E32	GND	G1	$V_{\text {DD }}$	H4	$V_{\text {DD }}$	J7	$V_{\text {DDP }}$
E33	GND	G2	I/O	H5	I/O	J8	I/O
E34	GND	G3	GND	H6	I/O	J9	$V_{\text {DD }}$
F1	I/O	G4	I/O	H7	I/O	J10	I/O
F2	NC	G5	$V_{\text {DDP }}$	H8	GND	J11	$V_{\text {DDP }}$
F3	I/O	G6	I/O	H9	I/O	J12	I/O
F4	V_{DD}	G7	$V_{\text {DD }}$	H10	1/O	J13	1/O
F5	I/O	G8	I/O	H11	1/O	J14	I/O
F6	GND	G9	$V_{\text {DDP }}$	H12	1/0	J15	I/O
F7	I/O	G10	I/O	H13	1/0	J16	I/O
F8	1/O	G11	1/O	H14	I/O	J17	I/O
F9	1/0	G12	I/O	H15	1/O	J18	I/O
F10	I/O	G13	I/O	H16	1/0	J19	I/O
F11	I/O	G14	I/O	H17	I/O	J20	1/0
F12	1/0	G15	I/O	H18	1/0	J21	I/O
F13	I/O	G16	I/O	H19	1/O	J22	I/O
F14	1/0	G17	1/0	H20	1/0	J23	I/O
F15	1/O	G18	I/O	H21	1/0	J24	$V_{\text {DDP }}$
F16	1/O	G19	1/O	H22	1/0	J25	I/O
F17	1/0	G20	I/O	H23	1/0	J26	$V_{D D}$

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA	
Pin Number	APA1000 Function	Pin Number	APA1000 Function	Pin Number	APA1000 Function	Pin Number	APA1000 Function
J27	I/O	K30	I/O	L33	I/O	N2	I/O
J28	$\mathrm{V}_{\text {DDP }}$	K31	I/O	L34	I/O	N3	I/O
J29	I/O	K32	I/O	M1	GND	N4	I/O
J30	1/0	K33	NC	M2	GND	N5	I/O
J31	I/O	K34	$V_{\text {DD }}$	M3	I/O	N6	I/O
$J 32$	GND	L1	I/O	M4	I/O	N7	I/O
J33	I/O	L2	1/O	M5	1/0	N8	I/O
J34	$V_{\text {DD }}$	L3	I/O	M6	1/O	N9	I/O
K1	$V_{\text {DD }}$	L4	1/O	M7	1/0	N10	I/O
K2	NC	L5	I/O	M8	1/O	N11	I/O
K3	I/O	L6	I/O	M9	I/O	N12	I/O
K4	I/O	L7	1/0	M10	I/O	N13	$V_{\text {DD }}$
K5	1/0	L8	1/O	M11	1/0	N14	$V_{D D}$
K6	1/O	L9	$V_{\text {DDP }}$	M12	$V_{\text {DD }}$	N15	$V_{\text {DD }}$
K7	1/0	L10	I/O	M13	I/O	N16	$V_{\text {DD }}$
K8	1/O	L11	V_{DD}	M14	$\mathrm{V}_{\text {DDP }}$	N17	$V_{\text {DD }}$
K9	I/O	L12	I/O	M15	$V_{\text {DDP }}$	N18	$V_{D D}$
K10	GND	L13	1/O	M16	$V_{\text {DDP }}$	N19	$V_{D D}$
K11	I/O	L14	1/O	M17	$V_{\text {DDP }}$	N20	$V_{\text {DD }}$
K12	I/O	L15	I/O	M18	$V_{\text {DDP }}$	N21	$V_{\text {DD }}$
K13	I/O	L16	I/O	M19	$V_{\text {DDP }}$	N22	$V_{\text {DD }}$
K14	I/O	L17	1/O	M20	$V_{\text {DDP }}$	N23	I/O
K15	1/0	L18	1/O	M21	$V_{\text {DDP }}$	N24	I/O
K16	1/O	L19	1/O	M22	I/O	N25	I/O
K17	1/O	L20	I/O	M23	$V_{\text {DD }}$	N26	I/O
K18	I/O	L21	1/O	M24	I/O	N27	I/O
K19	1/O	L22	I/O	M25	1/O	N28	I/O
K20	1/0	L23	1/O	M26	1/0	N29	I/O
K21	I/O	L24	$V_{\text {DD }}$	M27	I/O	N30	I/O
K22	1/O	L25	I/O	M28	1/0	N31	I/O
K23	1/0	L26	$V_{\text {DDP }}$	M29	1/O	N32	I/O
K24	I/O	L27	I/O	M30	I/O	N33	1/O
K25	GND	L28	I/O	M31	1/O	N34	I/O
K26	I/O	L29	1/O	M32	1/O	P1	$V_{\text {DDP }}$
K27	I/O	L30	I/O	M33	GND	P2	$V_{\text {DDP }}$
K28	1/O	L31	1/O	M34	GND	P3	I/O
K29	1/O	L32	1/O	N1	I/O	P4	1/0

1152-Pin FBGA		1152-Pin FBGA	
Pin Number	APA1000 Function	Pin Number	APA1000 Function
P5	I/O	R8	I/O
P6	1/0	R9	1/0
P7	I/O	R10	I/O
P8	I/O	R11	I/O
P9	1/0	R12	$V_{\text {DDP }}$
P10	1/O	R13	$V_{\text {DD }}$
P11	1/O	R14	GND
P12	$V_{\text {DDP }}$	R15	GND
P13	$V_{\text {DD }}$	R16	GND
P14	GND	R17	GND
P15	GND	R18	GND
P16	GND	R19	GND
P17	GND	R20	GND
P18	GND	R21	GND
P19	GND	R22	$V_{\text {DD }}$
P20	GND	R23	$V_{\text {DDP }}$
P21	GND	R24	I/O
P22	$V_{\text {DD }}$	R25	I/O
P23	$V_{\text {DDP }}$	R26	I/O
P24	I/O	R27	I/O
P25	I/O	R28	I/O
P26	1/O	R29	I/O
P27	I/O	R30	I/O
P28	1/O	R31	I/O
P29	I/O	R32	I/O
P30	I/O	R33	$V_{\text {DDP }}$
P31	I/O	R34	$V_{\text {DDP }}$
P32	I/O	T1	I/O
P33	$V_{\text {DDP }}$	T2	I/O
P34	$V_{\text {DDP }}$	T3	I/O
R1	$V_{\text {DDP }}$	T4	I/O
R2	$V_{\text {DDP }}$	T5	I/O
R3	I/O	T6	I/O
R4	I/O	T7	I/O
R5	I/O	T8	I/O
R6	I/O	T9	I/O
R7	I/O	T10	I/O

1152-Pin FBGA	
Pin Number	APA1000 Function
T11	I/O
T12	$V_{\text {DDP }}$
T13	$V_{\text {DD }}$
T14	GND
T15	GND
T16	GND
T17	GND
T18	GND
T19	GND
T20	GND
T21	GND
T22	$V_{D D}$
T23	$V_{\text {DDP }}$
T24	I/O
T25	I/O
T26	I/O
T27	I/O
T28	I/O
T29	I/O
T30	1/O
T31	I/O
T32	I/O
T33	I/O
T34	I/O
U1	GND
U2	GND
U3	I/O
U4	I/O / GLMX1
U5	AGND
U6	NPECL1
U7	I/O / GL1
U8	I/O
U9	I/O
U10	I/O
U11	I/O
U12	$V_{\text {DDP }}$
U13	$V_{\text {DD }}$

1152-Pin FBGA	
Pin Number	APA1000 Function
U14	GND
U15	GND
U16	GND
U17	GND
U18	GND
U19	GND
U20	GND
U21	GND
U22	$V_{\text {DD }}$
U23	$V_{\text {DDP }}$
U24	I/O
U25	I/O
U26	I/O
U27	I/O
U28	I/O
U29	NPECL2
U30	AGND
U31	I/O / GLMX2
U32	I/O
U33	GND
U34	GND
V1	GND
V2	GND
V3	I/O
V4	AVDD
V5	I/O / GL2
V6	PPECL1 / Input
V7	I/O
V8	I/O
V9	I/O
V10	I/O
V11	I/O
V12	$V_{\text {DDP }}$
V13	$V_{D D}$
V14	GND
V15	GND

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA	
Pin Number	APA1000 Function	Pin Number	APA1000 Function	Pin Number	APA1000 Function	Pin Number	APA1000 Function
V16	GND	W18	GND	Y21	GND	AA24	I/O
V17	GND	W19	GND	Y22	$V_{\text {DD }}$	AA25	I/O
V18	GND	W20	GND	Y23	$V_{\text {DDP }}$	AA26	I/O
V19	GND	W21	GND	Y24	I/O	AA27	I/O
V20	GND	W22	$V_{\text {DD }}$	Y25	I/O	AA28	I/O
V21	GND	W23	$V_{\text {DDP }}$	Y26	1/0	AA29	I/O
V22	$V_{\text {DD }}$	W24	I/O	Y27	I/O	AA30	I/O
V23	$V_{\text {DDP }}$	W25	1/0	Y28	I/O	AA31	I/O
V24	I/O	W26	1/0	Y29	1/O	AA32	1/0
V25	1/0	W27	1/0	Y30	1/O	AA33	$V_{\text {DDP }}$
V26	1/O	W28	I/O	Y31	I/O	AA34	$V_{\text {DDP }}$
V27	I/O	W29	I/O	Y32	I/O	AB1	I/O
V28	PPECL2 /	W30	1/0	Y33	$V_{\text {DDP }}$	AB2	I/O
	Input	W31	I/O	Y34	$V_{\text {DDP }}$	AB3	1/0
V29	I/O / GL4	W32	I/O	AA1	$V_{\text {DDP }}$	AB4	I/O
V30	I/O / GL3	W33	I/O	AA2	$V_{\text {DDP }}$	AB5	I/O
V31	AVDD	W34	I/O	AA3	I/O	AB6	I/O
V32	I/O	Y1	$V_{\text {DDP }}$	AA4	I/O	AB7	I/O
V33	GND	Y2	$V_{\text {DDP }}$	AA5	I/O	AB8	I/O
V34	GND	Y3	I/O	AA6	1/0	AB9	I/O
W1	I/O	Y4	I/O	AA7	I/O	AB10	I/O
W2	I/O	Y5	1/O	AA8	1/O	AB11	I/O
W3	I/O	Y6	I/O	AA9	I/O	AB12	I/O
W4	I/O	Y7	I/O	AA10	1/O	AB13	$V_{\text {DD }}$
W5	I/O	Y8	I/O	AA11	1/O	AB14	$V_{\text {DD }}$
W6	I/O	Y9	I/O	AA12	$V_{\text {DDP }}$	AB15	$V_{\text {DD }}$
W7	I/O	Y10	I/O	AA13	$V_{D D}$	AB16	$V_{D D}$
W8	I/O	Y11	I/O	AA14	GND	AB17	$V_{\text {DD }}$
W9	I/O	Y12	$V_{\text {DDP }}$	AA15	GND	AB18	$V_{D D}$
W10	I/O	Y13	$V_{D D}$	AA16	GND	AB19	$V_{\text {DD }}$
W11	I/O	Y14	GND	AA17	GND	AB20	$V_{D D}$
W12	$V_{\text {DDP }}$	Y15	GND	AA18	GND	AB21	$V_{\text {DD }}$
W13	$V_{\text {DD }}$	Y16	GND	AA19	GND	AB22	$V_{D D}$
W14	GND	Y17	GND	AA20	GND	AB23	I/O
W15	GND	Y18	GND	AA21	GND	AB24	I/O
W16	GND	Y19	GND	AA22	$V_{D D}$	AB25	I/O
W17	GND	Y20	GND	AA23	$V_{\text {DDP }}$	AB26	I/O

1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA	
Pin Number	APA1000 Function						
AB27	I/O	AC30	I/O	AD33	I/O	AF2	I/O
AB28	1/O	AC31	I/O	AD34	1/O	AF3	GND
AB29	I/O	AC32	I/O	AE1	$V_{\text {DD }}$	AF4	I/O
AB30	I/O	AC33	GND	AE2	NC	AF5	I/O
AB31	1/0	AC34	GND	AE3	I/O	AF6	1/O
AB32	1/0	AD1	I/O	AE4	I/O	AF7	$V_{\text {DDP }}$
AB33	1/O	AD2	I/O	AE5	I/O	AF8	I/O
AB34	I/O	AD3	1/O	AE6	I/O	AF9	$V_{\text {DD }}$
AC1	GND	AD4	I/O	AE7	I/O	AF10	I/O
AC2	GND	AD5	1/O	AE8	I/O	AF11	$V_{\text {DDP }}$
AC3	I/O	AD6	I/O	AE9	I/O	AF12	I/O
AC4	I/O	AD7	I/O	AE10	GND	AF13	I/O
AC5	1/0	AD8	1/O	AE11	I/O	AF14	1/O
AC6	I/O	AD9	$V_{\text {DDP }}$	AE12	1/0	AF15	I/O
AC7	1/0	AD10	I/O	AE13	I/O	AF16	I/O
AC8	I/O	AD11	$V_{\text {DD }}$	AE14	I/O	AF17	I/O
AC9	I/O	AD12	I/O	AE15	1/0	AF18	I/O
AC10	I/O	AD13	1/O	AE16	1/0	AF19	1/O
AC11	I/O	AD14	I/O	AE17	I/O	AF20	I/O
AC12	V_{DD}	AD15	I/O	AE18	I/O	AF21	I/O
AC13	I/O	AD16	1/0	AE19	I/O	AF22	I/O
AC14	$\mathrm{V}_{\text {DDP }}$	AD17	I/O	AE20	1/0	AF23	I/O
AC15	$V_{\text {DDP }}$	AD18	1/O	AE21	I/O	AF24	$V_{\text {DDP }}$
AC16	$V_{\text {DDP }}$	AD19	I/O	AE22	I/O	AF25	TCK
AC17	$V_{\text {DDP }}$	AD20	I/O	AE23	1/0	AF26	$V_{\text {DD }}$
AC18	$V_{\text {DDP }}$	AD21	I/O	AE24	I/O	AF27	TRST
AC19	$V_{\text {DDP }}$	AD22	I/O	AE25	GND	AF28	$V_{\text {DDP }}$
AC20	$V_{\text {DDP }}$	AD23	1/0	AE26	I/O	AF29	I/O
AC21	$V_{\text {DDP }}$	AD24	$V_{\text {DD }}$	AE27	I/O	AF30	I/O
AC22	I/O	AD25	I/O	AE28	1/0	AF31	I/O
AC23	$V_{D D}$	AD26	$V_{\text {DDP }}$	AE29	I/O	AF32	GND
AC24	I/O	AD27	I/O	AE30	1/0	AF33	I/O
AC25	I/O	AD28	I/O	AE31	I/O	AF34	$V_{\text {DD }}$
AC26	1/O	AD29	1/0	AE32	I/O	AG1	$V_{D D}$
AC27	I/O	AD30	1/0	AE33	NC	AG2	NC
AC28	I/O	AD31	I/O	AE34	$V_{\text {DD }}$	AG3	I/O
AC29	I/O	AD32	1/0	AF1	$V_{\text {DD }}$	AG4	V_{DD}

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA		1152-Pin FBGA	
Pin Number	APA1000 Function	Pin Number	APA1000 Function	Pin Number	APA1000 Function	Pin Number	APA1000 Function
AG5	I/O	AH8	I/O	AJ11	I/O	AK14	I/O
AG6	1/0	AH9	$V_{\text {DDP }}$	AJ12	I/O	AK15	I/O
AG7	I/O	AH10	I/O	AJ13	I/O	AK16	I/O
AG8	GND	AH11	1/0	AJ14	1/O	AK17	I/O
AG9	I/O	AH12	1/0	AJ15	I/O	AK18	I/O
AG10	I/O	AH13	I/O	AJ16	1/0	AK19	1/0
AG11	1/0	AH14	1/O	AJ17	1/O	AK20	1/O
AG12	1/O	AH15	1/O	AJ18	I/O	AK21	I/O
AG13	I/O	AH16	I/O	AJ19	I/O	AK22	1/0
AG14	1/O	AH17	1/O	AJ20	1/O	AK23	I/O
AG15	I/O	AH18	I/O	AJ21	I/O	AK24	I/O
AG16	I/O	AH19	I/O	AJ22	I/O	AK25	I/O
AG17	1/0	AH20	1/O	AJ23	1/0	AK26	1/O
AG18	I/O	AH21	I/O	AJ24	I/O	AK27	I/O
AG19	I/O	AH22	I/O	AJ25	I/O	AK28	$V_{\text {DDP }}$
AG20	I/O	AH23	I/O	AJ26	I/O	AK29	TDI
AG21	I/O	AH24	I/O	AJ27	I/O	AK30	$V_{\text {DD }}$
AG22	I/O	AH25	I/O	AJ28	I/O	AK31	$V_{\text {PP }}$
AG23	I/O	AH26	$V_{\text {DDP }}$	AJ29	GND	AK32	GND
AG24	I/O	AH27	I/O	AJ30	RCK	AK33	GND
AG25	I/O	AH28	$V_{\text {DD }}$	AJ31	$V_{\text {DD }}$	AK34	GND
AG26	I/O	AH29	TDO	AJ32	I/O	AL1	GND
AG27	GND	AH30	$V_{\text {DDP }}$	AJ33	NC	AL2	GND
AG28	I/O	AH31	$V_{\text {PN }}$	AJ34	NC	AL3	GND
AG29	1/0	AH32	GND	AK1	GND	AL4	GND
AG30	I/O	AH33	I/O	AK2	GND	AL5	I/O
AG31	$V_{D D}$	AH34	$V_{\text {DD }}$	AK3	GND	AL6	$V_{\text {DD }}$
AG32	I/O	AJ1	I/O	AK4	I/O	AL7	I/O
AG33	NC	AJ2	NC	AK5	$V_{\text {DD }}$	AL8	$V_{\text {DD }}$
AG34	$V_{\text {DD }}$	AJ3	I/O	AK6	I/O	AL9	I/O
AH1	$V_{D D}$	AJ4	$V_{\text {DD }}$	AK7	$V_{\text {DDP }}$	AL10	I/O
AH2	I/O	AJ5	I/O	AK8	I/O	AL11	I/O
AH3	GND	AJ6	GND	AK9	1/0	AL12	I/O
AH4	I/O	AJ7	I/O	AK10	1/O	AL13	I/O
AH5	$V_{\text {DDP }}$	AJ8	I/O	AK11	I/O	AL14	1/0
AH6	I/O	AJ9	I/O	AK12	1/O	AL15	I/O
AH7	$V_{\text {DD }}$	AJ10	I/O	AK13	1/O	AL16	1/O

1152-Pin FBGA	
Pin Number	APA1000 Function
AL17	I/O
AL18	I/O
AL19	I/O
AL20	I/O
AL21	I/O
AL22	I/O
AL23	I/O
AL24	I/O
AL25	I/O
AL26	I/O
AL27	$V_{\text {DD }}$
AL28	I/O
AL29	$V_{\text {DD }}$
AL30	TMS
AL31	GND
AL32	GND
AL33	GND
AL34	GND
AM1	GND
AM2	GND
AM3	NC
AM4	GND
AM5	GND
AM6	I/O
AM7	GND
AM8	I/O
AM9	GND
AM10	I/O
AM11	I/O
AM12	I/O
AM13	I/O
AM14	I/O
AM15	1/0
AM16	I/O
AM17	I/O
AM18	I/O
AM19	I/O

1152-Pin FBGA	
Pin Number	APA1000 Function
AM20	I/O
AM21	I/O
AM22	I/O
AM23	I/O
AM24	I/O
AM25	I/O
AM26	GND
AM27	I/O
AM28	GND
AM29	I/O
AM30	GND
AM31	GND
AM32	NC
AM33	GND
AM34	GND
AN1	NC
AN2	NC
AN3	GND
AN4	GND
AN5	GND
AN6	NC
AN7	I/O
AN8	NC
AN9	I/O
AN10	NC
AN11	I/O
AN12	GND
AN13	I/O
AN14	$V_{\text {DDP }}$
AN15	$V_{\text {DDP }}$
AN16	I/O
AN17	GND
AN18	GND
AN19	I/O
AN20	$V_{\text {DDP }}$
AN2 1	$V_{\text {DDP }}$
AN22	I/O

1152-Pin FBGA	
Pin Number	APA1000 Function
AN23	GND
AN24	I/O
AN25	NC
AN26	I/O
AN27	NC
AN28	I/O
AN29	NC
AN30	GND
AN31	GND
AN32	GND
AN33	NC
AN34	NC
AP2	NC
AP3	GND
AP4	GND
AP5	GND
AP6	I/O
AP7	$V_{\text {DD }}$
AP8	$V_{\text {DD }}$
AP9	$V_{D D}$
AP10	$V_{\text {DD }}$
AP11	I/O
AP12	GND
AP13	I/O
AP14	$V_{\text {DDP }}$
AP15	$V_{\text {DDP }}$
AP16	I/O
AP17	GND
AP18	GND
AP19	I/O
AP20	$V_{\text {DDP }}$
AP21	$V_{\text {DDP }}$
AP22	I/O
AP23	GND
AP24	I/O
AP25	$V_{\text {DD }}$
AP26	$V_{\text {DD }}$

1152-Pin FBGA	
Pin Number	APA1000 Function
AP27	V $_{\text {DD }}$
AP28	$V_{D D}$
AP29	I/O
AP30	GND
AP31	GND
AP32	GND
AP33	NC

624-Pin CCGA/LGA

Note

For Package Manufacturing and Environmental information, visit the Package Resource center at http://www.actel.com/products/solutions/package/docs.aspx.

624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA1000 Function
A2	I/O	I/O
A3	I/O	I/O
A4	I/O	I/O
A5	I/O	I/O
A6	I/O	I/O
A7	I/O	I/O
A8	I/O	I/O
A9	I/O	I/O
A10	I/O	I/O
A11	I/O	I/O
A12	I/O	1/0
A13	I/O	I/O
A14	I/O	I/O
A15	I/O	I/O
A16	I/O	I/O
A17	I/O	I/O
A18	I/O	I/O
A19	I/O	I/O
A20	I/O	I/O
A21	I/O	I/O
A22	I/O	I/O
A23	I/O	I/O
A24	$V_{\text {DDP }}$	$V_{\text {DDP }}$
A25	GND	GND
B1	I/O	I/O
B2	GND	GND
B3	$V_{\text {DDP }}$	$V_{\text {DDP }}$
B4	I/O	I/O
B5	I/O	I/O
B6	I/O	I/O
B7	I/O	I/O
B8	I/O	I/O
B9	I/O	I/O
B10	I/O	I/O
B11	I/O	I/O

624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA 1000 Function
B12	I/O	I/O
B13	I/O	1/O
B14	I/O	I/O
B15	I/O	I/O
B16	I/O	1/O
B17	I/O	I/O
B18	I/O	I/O
B19	I/O	1/O
B20	I/O	I/O
B21	I/O	I/O
B22	I/O	1/0
B23	$V_{\text {DD }}$	$V_{\text {DD }}$
B24	GND	GND
B25	$V_{\text {DDP }}$	$V_{\text {DDP }}$
C1	I/O	I/O
C2	$V_{\text {DDP }}$	$V_{\text {DDP }}$
C3	GND	GND
C4	$V_{\text {DD }}$	$V_{\text {DD }}$
C5	I/O	I/O
C6	I/O	I/O
C7	GND	GND
C8	I/O	I/O
C9	I/O	I/O
C10	I/O	I/O
C11	I/O	I/O
C12	I/O	I/O
C13	I/O	1/0
C14	I/O	I/O
C15	I/O	I/O
C16	I/O	I/O
C17	1/0	I/O
C18	I/O	I/O
C19	GND	GND
C20	I/O	I/O
C21	I/O	I/O

624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA1000 Function
C22	I/O	I/O
C23	GND	GND
C24	$V_{\text {DD }}$	$V_{D D}$
C25	I/O	I/O
D1	I/O	I/O
D2	I/O	I/O
D3	$V_{\text {DD }}$	$V_{\text {DD }}$
D4	GND	GND
D5	I/O	I/O
D6	I/O	I/O
D7	1/0	1/O
D8	I/O	I/O
D9	I/O	I/O
D10	I/O	I/O
D11	GND	GND
D12	I/O	I/O
D13	1/0	1/0
D14	1/0	I/O
D15	GND	GND
D16	I/O	I/O
D17	I/O	1/O
D18	1/0	1/O
D19	1/0	1/O
D20	1/O	I/O
D21	1/0	1/O
D22	1/0	1/O
D23	1/0	I/O
D24	1/O	I/O
D25	1/O	1/O
E1	1/0	I/O
E2	1/0	1/O
E3	1/0	I/O
E4	1/0	I/O
E5	1/0	1/0
E6	1/0	I/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

624-Pin CCGA/LGA			624-Pin CCGA/LGA			624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA1000 Function	Pin Number	APA600 Function	APA 1000 Function	Pin Number	APA600 Function	APA 1000 Function
E7	I/O	I/O	F17	I/O	I/O	H2	I/O	I/O
E8	I/O	I/O	F18	GND	GND	H3	GND	GND
E9	I/O	I/O	F19	I/O	I/O	H4	I/O	I/O
E10	I/O	I/O	F20	I/O	I/O	H5	I/O	I/O
E11	I/O	I/O	F21	I/O	I/O	H6	I/O	I/O
E12	I/O	I/O	F22	I/O	I/O	H7	I/O	I/O
E13	I/O	I/O	F23	I/O	I/O	H8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E14	I/O	I/O	F24	I/O	I/O	H9	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E15	1/0	I/O	F25	I/O	I/O	H10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E16	I/O	I/O	G1	I/O	I/O	H11	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E17	I/O	I/O	G2	I/O	I/O	H12	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E18	I/O	I/O	G3	I/O	I/O	H13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E19	I/O	I/O	G4	I/O	I/O	H14	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E20	I/O	I/O	G5	I/O	I/O	H15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E21	I/O	I/O	G6	I/O	I/O	H16	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E22	I/O	I/O	G7	I/O	I/O	H17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E23	I/O	I/O	G8	I/O	I/O	H18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E24	I/O	1/O	G9	I/O	I/O	H19	I/O	I/O
E25	I/O	I/O	G10	I/O	I/O	H20	I/O	I/O
F1	I/O	I/O	G11	I/O	I/O	H21	I/O	I/O
F2	I/O	I/O	G12	I/O	I/O	H22	I/O	I/O
F3	I/O	I/O	G13	I/O	I/O	H23	GND	GND
F4	I/O	I/O	G14	I/O	I/O	H24	I/O	I/O
F5	I/O	I/O	G15	I/O	I/O	H25	I/O	I/O
F6	I/O	I/O	G16	I/O	I/O	J1	I/O	I/O
F7	1/O	I/O	G17	I/O	I/O	$J 2$	I/O	I/O
F8	GND	GND	G18	I/O	I/O	J3	I/O	I/O
F9	I/O	I/O	G19	1/O	1/O	J4	I/O	I/O
F10	1/O	I/O	G20	I/O	I/O	J5	I/O	I/O
F11	I/O	I/O	G21	I/O	I/O	J6	GND	GND
F12	1/O	1/0	G22	1/O	1/O	J7	I/O	I/O
F13	I/O	I/O	G23	I/O	I/O	J8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
F14	I/O	I/O	G24	I/O	I/O	J9	GND	GND
F15	I/O	I/O	G25	I/O	I/O	J10	GND	GND
F16	1/O	I/O	H1	I/O	1/0	J11	GND	GND

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA1000 Function
$J 12$	GND	GND
J13	GND	GND
J14	GND	GND
J15	GND	GND
J16	GND	GND
$J 17$	GND	GND
$J 18$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
J19	I/O	I/O
J20	GND	GND
J21	I/O	I/O
J22	I/O	I/O
J23	I/O	I/O
J24	I/O	I/O
J25	I/O	I/O
K1	I/O	I/O
K2	I/O	I/O
K3	I/O	I/O
K4	I/O	I/O
K5	I/O	I/O
K6	I/O	I/O
K7	I/O	I/O
K8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K9	GND	GND
K10	$V_{\text {DD }}$	$V_{\text {DD }}$
K11	$V_{\text {DD }}$	$V_{D D}$
K12	$V_{\text {DD }}$	$V_{\text {DD }}$
K13	$V_{\text {DD }}$	$V_{\text {DD }}$
K14	$V_{D D}$	$V_{D D}$
K15	$V_{\text {DD }}$	$V_{\text {DD }}$
K16	$V_{\text {DD }}$	$V_{\text {DD }}$
K17	GND	GND
K18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K19	I/O	I/O
K20	I/O	I/O
K21	I/O	I/O

624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA 1000 Function
K22	I/O	I/O
K23	I/O	I/O
K24	I/O	I/O
K25	I/O	I/O
L1	I/O	I/O
L2	I/O	I/O
L3	1/0	1/0
L4	1/0	I/O
L5	I/O	I/O
L6	I/O	I/O
L7	1/0	1/0
L8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
L9	GND	GND
L10	$V_{D D}$	$V_{\text {DD }}$
L11	GND	GND
L12	GND	GND
L13	GND	GND
L14	GND	GND
L15	GND	GND
L16	$V_{\text {DD }}$	$V_{\text {DD }}$
L17	GND	GND
L18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
L19	I/O	I/O
L20	1/0	1/O
L21	I/O	I/O
L22	1/0	1/O
L23	1/0	1/0
L24	1/O	1/O
L25	1/0	1/O
M1	1/0	1/0
M2	I/O	I/O
M3	I/O	I/O
M4	AGND	AGND
M5	NPECL1	NPECL1
M6	I/O / GL2	I/O / GL2

624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA 1000 Function
M7	I/O / GLMX1	I/O / GLMX1
M8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M9	GND	GND
M10	$V_{\text {DD }}$	$V_{\text {DD }}$
M11	GND	GND
M12	GND	GND
M13	GND	GND
M14	GND	GND
M15	GND	GND
M16	$V_{\text {DD }}$	$V_{\text {DD }}$
M17	GND	GND
M18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M19	I/O / GLMX2	I/O / GLMX2
M20	I/O / GL4	I/O / GL4
M21	NPECL2	NPECL2
M22	AGND	AGND
M23	I/O	I/O
M24	I/O	I/O
M25	I/O	I/O
N1	I/O	I/O
N2	I/O	I/O
N3	I/O	I/O
N4	AVDD	AVDD
N5	PPECL1 / Input	PPECL1 / Input
N6	I/O / GL1	I/O / GL1
N7	I/O	1/O
N8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
N9	GND	GND
N10	$V_{D D}$	$V_{\text {DD }}$
N11	GND	GND
N12	GND	GND
N13	GND	GND
N14	GND	GND
N15	GND	GND

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

624-Pin CCGA/LGA			624-Pin CCGA/LGA			624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA1000 Function	Pin Number	APA600 Function	APA 1000 Function	Pin Number	APA600 Function	APA 1000 Function
N16	$V_{\text {DD }}$	$V_{\text {DD }}$	P25	I/O	I/O	T10	$V_{\text {DD }}$	$V_{\text {DD }}$
N17	GND	GND	R1	I/O	I/O	T11	$V_{\text {DD }}$	$V_{D D}$
N18	$V_{\text {DDP }}$	$V_{\text {DDP }}$	R2	I/O	I/O	T12	$V_{\text {DD }}$	$V_{\text {DD }}$
N19	I/O	I/O	R3	1/0	I/O	T13	$V_{\text {DD }}$	$V_{D D}$
N20	I/O / GL3	I/O / GL3	R4	I/O	1/O	T14	$V_{\text {DD }}$	$V_{\text {DD }}$
N21	PPECL2 / Input	PPECL2 / Input	R5	1/0	1/0	T15	$V_{\text {DD }}$	$V_{D D}$
			R6	1/0	I/O	T16	$V_{\text {DD }}$	$V_{\text {DD }}$
N22	AVDD	AVDD	R7	I/O	I/O	T17	GND	GND
N23	I/O	I/O		$V_{\text {DDP }}$	$V_{\text {DDP }}$	T18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
N24	I/O	I/O	R9	GND	GND	T19	I/O	I/O
N25	I/O	I/O	R10	$V_{\text {DD }}$	$V_{\text {DD }}$	T20	I/O	I/O
P1	I/O	I/O	R11	GND	GND	T21	I/O	I/O
P2	I/O	I/O	R12	GND	GND	T22	I/O	I/O
P3	I/O	I/O	R13	GND	GND	T23	I/O	I/O
P4	GND	GND	R14	GND	GND	T24	I/O	I/O
P5	I/O	I/O	R15	GND	GND	T25	I/O	I/O
P6	I/O	I/O	R16	$V_{\text {DD }}$	$V_{\text {DD }}$	U1	I/O	I/O
P7	I/O	I/O	R17	GND	GND	U2	I/O	I/O
P8	$V_{\text {DDP }}$	$V_{\text {DDP }}$	R18	$V_{\text {DDP }}$	$V_{\text {DDP }}$	U3	I/O	I/O
P9	GND	GND	R19	I/O	I/O	U4	I/O	I/O
P10	$V_{\text {DD }}$	$V_{\text {DD }}$	R20	I/O	I/O	U5	I/O	I/O
P11	GND	GND	R21	I/O	I/O	U6	GND	GND
P12	GND	GND	R22	I/O	I/O	U7	I/O	I/O
P13	GND	GND	R23	I/O	I/O	U8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P14	GND	GND	R24	I/O	I/O	U9	GND	GND
P15	GND	GND	R25	I/O	I/O	U10	GND	GND
P16	$V_{\text {DD }}$	$V_{\text {DD }}$	T1	I/O	I/O	U11	GND	GND
P17	GND	GND	T2	I/O	I/O	U12	GND	GND
P18	$V_{\text {DDP }}$	$V_{\text {DDP }}$	T3	I/O	I/O	U13	GND	GND
P19	I/O	I/O	T4	I/O	I/O	U14	GND	GND
P20	I/O	I/O	T5	I/O	I/O	U15	GND	GND
P21	I/O	I/O	T6	I/O	I/O	U16	GND	GND
P22	GND	GND	T7	I/O	I/O	U17	GND	GND
P23	I/O	I/O	T8	$V_{\text {DDP }}$	$V_{\text {DDP }}$	U18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P24	I/O	I/O	T9	GND	GND	U19	I/O	I/O

624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA1000 Function
U20	GND	GND
U21	I/O	I/O
U22	I/O	I/O
U23	I/O	I/O
U24	I/O	I/O
U25	I/O	I/O
V1	I/O	I/O
V2	I/O	I/O
V3	GND	GND
V4	I/O	I/O
V5	I/O	1/0
V6	I/O	I/O
V7	I/O	I/O
V8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V9	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V11	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V12	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V14	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V16	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V19	RCK	RCK
V20	I/O	I/O
V21	I/O	I/O
V22	I/O	I/O
V23	GND	GND
V24	I/O	I/O
V25	I/O	I/O
W1	I/O	I/O
W2	I/O	I/O
W3	I/O	I/O
W4	I/O	I/O

624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA 1000 Function
W5	I/O	I/O
W6	I/O	I/O
W7	I/O	I/O
W8	I/O	I/O
W9	I/O	I/O
W10	I/O	I/O
W11	1/0	1/0
W12	I/O	I/O
W13	I/O	I/O
W14	I/O	1/O
W15	1/0	1/0
W16	I/O	I/O
W17	1/O	I/O
W18	I/O	I/O
W19	TMS	TMS
W20	TDO	TDO
W21	I/O	I/O
W22	I/O	I/O
W23	I/O	I/O
W24	I/O	I/O
W25	I/O	I/O
Y1	I/O	I/O
Y2	1/O	I/O
Y3	1/O	I/O
Y4	I/O	I/O
Y5	1/O	1/O
Y6	1/0	I/O
Y7	I/O	I/O
Y8	GND	GND
Y9	1/O	I/O
Y10	1/O	I/O
Y11	I/O	I/O
Y12	I/O	I/O
Y13	I/O	I/O
Y14	1/O	I/O

624-Pin CCGA/LGA		
Pin Number	APA600 Function	APA1000 Function
Y15	I/O	I/O
Y16	I/O	1/0
Y17	GND	GND
Y18	I/O	I/O
Y19	TCK	TCK
Y20	VPP	VPP
Y21	VPN	VPN
Y22	I/O	I/O
Y23	I/O	I/O
Y24	I/O	I/O
Y25	I/O	I/O
AA1	I/O	I/O
AA2	I/O	1/O
AA3	I/O	I/O
AA4	I/O	I/O
AA5	I/O	I/O
AA6	I/O	I/O
AA7	I/O	I/O
AA8	I/O	I/O
AA9	I/O	I/O
AA10	I/O	I/O
AA11	I/O	I/O
AA12	I/O	1/O
AA13	I/O	I/O
AA14	I/O	I/O
AA15	I/O	I/O
AA16	I/O	1/O
AA17	I/O	I/O
AA18	I/O	I/O
AA19	I/O	I/O
AA20	TDI	TDI
AA21	TRST	TRST
AA22	I/O	I/O
AA23	I/O	I/O
AA24	I/O	I/O

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

624-Pin CCGA/LGA			624-Pin CCGA/LGA			624-Pin CCGA/LGA		
$\begin{gathered} \hline \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA1000 Function	Pin Number	APA600 Function	APA1000 Function	$\begin{gathered} \hline \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA1000 Function
AA25	//O	1/0	AC10	1/0	//0	AD20	I/O	I/O
AB1	//0	I/O	AC11	//0	//O	AD21	//0	I/O
AB2	1/0	1/0	AC12	1/0	//O	AD22	I/O	I/O
AB3	I/O	I/O	AC13	I/O	I/O	AD23	$V_{D D}$	$V_{D D}$
AB4	I/O	I/O	AC14	I/O	I/O	AD24	GND	GND
AB5	I/O	I/O	AC15	I/O	//0	AD25	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AB6	I/O	I/O	AC16	I/O	I/O	AE1	GND	GND
AB7	I/O	I/O	AC17	1/0	I/O	AE2	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AB8	I/O	I/O	AC18	//O	//O	AE3	I/O	I/O
AB9	I/O	//O	AC19	GND	GND	AE4	I/O	//O
AB10	//O	//O	AC20	I/O	//O	AE5	I/O	//0
AB11	GND	GND	AC21	I/O	1/0	AE6	I/O	I/O
AB12	I/O	I/O	AC22	I/O	I/O	AE7	I/O	I/O
AB13	I/O	I/O	AC23	I/O	I/O	AE8	I/O	I/O
AB14	I/O	I/O	AC24	$V_{\text {DD }}$	$V_{\text {DD }}$	AE9	I/O	I/O
AB15	GND	GND	AC25	I/O	I/O	AE10	I/O	I/O
AB16	//O	I/O	AD1	$V_{\text {DDP }}$	$V_{\text {DDP }}$	AE11	//O	I/O
AB17	I/O	I/O	AD2	GND	GND	AE12	I/O	I/O
AB18	//O	I/O	AD3	$V_{D D}$	$V_{D D}$	AE13	I/O	//O
AB19	//O	I/O	AD4	I/O	//O	AE14	I/O	I/O
AB20	//O	//O	AD5	//O	//O	AE15	//O	I/O
AB21	I/O	//O	AD6	I/O	I/O	AE16	I/O	I/O
AB22	I/O	I/O	AD7	I/O	//O	AE17	I/O	I/O
AB23	I/O	I/O	AD8	I/O	I/O	AE18	I/O	I/O
AB24	I/O	I/O	AD9	I/O	//O	AE19	I/O	I/O
AB25	//O	//O	AD10	//O	//O	AE20	I/O	I/O
AC1	//O	//O	AD11	//0	//O	AE21	I/O	I/O
AC2	$V_{\text {DD }}$	$V_{\text {DD }}$	AD12	//O	I/O	AE22	I/O	//O
AC3	GND	GND	AD13	//0	//O	AE23	I/O	I/O
AC4	I/O	I/O	AD14	1/0	//O	AE24	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AC5	I/O	I/O	AD15	I/O	//O	AE25	GND	GND
AC6	I/O	I/O	AD16	I/O	//O			
AC7	GND	GND	AD17	I/O	//O			
AC8	I/O	I/O	AD18	I/O	//O			
AC9	I/O	I/O	AD19	I/O	//O			

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous version	Changes in current version (v5.8)	Page
v5.7 (September 2008)	The "PLL Electrical Specifications" table was updated signficantly. Changes were made to the Input, VCO (Voltage Controlled Oscillator), and Output frequencies, and the acquisition time.	page 1-21
	Table 1-10 is new.	page 1-22
	Table 1-23 is the same table that was in v5.7, but it now only applies to commercial and industrial temperature ranges. Table 1-24 is based on Table 1-23 but Table 1-24 only applies to military temperature. The V_{OH} and V_{OL} specifications were updated in Table 1-24, and changes have been made to the drive currents at which $3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{OH}}$ and V_{OL} voltage levels are measured and are now split by slew rate. In addition in Table 1-24, the maximum V_{IL} specification has changed from 0.8 V to 0.7 V for 3.3 V Schmitt-trigger input operation.	page 1-41
$\begin{aligned} & \hline \text { v5.6 } \\ & \text { (August 2008) } \end{aligned}$	V_{OH} and V_{OL} data in Table 1-24 was changed back to the data in v5.5.	page 1-41
v5.5 (February 2007)	V_{OH} and V_{OL} data was updated in Table 1-24.	page 1-41
v5.4 (October 2006)	A statement about single cell and cascaded cell timing diagrams was added to the "Enclosed Timing Diagrams - FIFO Mode: " section.	page 1-69
	The following pins were updated in the "144-FBGA Pin" table:	page 2-38
$\begin{aligned} & \text { v5.3 } \\ & \text { (May 2006) } \end{aligned}$	The heading, MIL-STD-883B, and note 4 were added to the "Device Resources" table.	page iii
	The "Temperature Grade Offerings" table was updated to include the military (M) temperature grade in the following device/packages: APA300-FG144 APA300-FG256 APA600-FG256 APA600-FG484 APA600-FG676 APA1000-FG896	page iv
v5.2 (December 2005)	90° and 270° phase shift support was removed from the datasheet.	N/A
	The "Ordering Information" section was updated to include RoHS information.	page ii
	The last paragraph of the "Boundary Scan (JTAG)" section was updated.	page 1-11
	The Output Frequency Range in the "Timing Control and Characteristics " section.	page 1-13
	The title for Table 1-19 was updated.	page 1-35
	The caption was updated in Figure 1-48.	page 1-76
v5.1	MIL-STD-883 was added to the datasheet.	N/A
	V_{CC} and $\mathrm{V}_{\text {CCI }}$ were changed to $\mathrm{V}_{\mathrm{DDP}}$	N/A
	Table 1-9 was updated to include $135^{\circ} \mathrm{C}$.	page 1-20

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Previous version	Changes in current version (v5.8)	Page
v5.0	In the "208-Pin PQFP" table, the following pin numbers have been updated: Pin Number Function 24 I/O / GL2 30 /O / GL1	page 2-6
	In the "208-Pin CQFP" table, the following pin numbers have been updated: Pin Number Function 23 I/O / GLMX1 24 I/O / GL2 28 PPECL1 / Input 30 I/O / GL1 128 I/O / GL3 129 PPECL2 / Input 134 I/O / GL4 135 I/O / GLMX2	page 2-13
v4.1	In the "624-Pin CCGA/LGA" table, the following pin numbers have been updated:	page 2-79
	MIL-STD 883B data will be added into this datasheet after the MIL-STD 883B qualification is complete.	
	Green packaging information in the "Ordering Information" section was updated.	page ii
	The "Temperature Grade Offerings" table was updated for the CG624.	page iv
	The "Ordering Information" section was updated.	page ii
	The "Live at Power-Up" section is new.	page 1-3
	Note 2 in Figure 1-4 was updated.	page 1-4
	The 3.3 V column in Table 1-3 was updated.	page 1-9
	The "Input/Output Blocks" section was updated.	page 1-9
	The note was removed from Table 1-4.	page 1-9
	The "Power-Up Sequencing" section was updated.	page 1-10
	The first bullet in the "ProASICPLUS Clock Management System" section was updated.	page 1-13
	The first paragraph in the "Performance Retention" section was updated.	page 1-34
	Mixed Voltage was removed from Table 1-20.	page 1-36
	Table 1-21 was updated.	page 1-36
	Mixed Mode Voltage was removed from Table 1-22 and the Military/MIL-STD-883B column was updated.	page 1-37
	All tables from page 1-45 to page 1-55 were updated.	page 1-45 to page 1-55
	Table 1-50 is new.	page 1-57
	Figure 1-30 is new.	page 1-57
	Note 1 in Table 1-52 was updated.	page 1-59
	The notes in Table 1-56 were updated.	page 1-63
	A note was added to Figure 1-48.	page 1-76

Previous version	Changes in current version (v5.8)	Page
v4.1 (continued)	A note was added to Table 1-68.	Table 1-68
	The "TRST Test Reset Input" section was updated in the "Pin Description" section.	page 1-77
	The "624-Pin CCGA/LGA" section was updated for the APA600 and APA1000. Please review all pin data.	page 2-78
v4.0	Figure 1-20 was updated.	page 1-19
	Table 1-48 was updated.	page 1-56
	The "1152-Pin FBGA" figure was updated.	page 2-69
	Pin names were changed to more accurately reflect the multiple functions supported by each pin.	
v3.5	The ProASIC ${ }^{\text {PLUS }}$ and ProASIC ${ }^{\text {PLUS }}$ Military/Aerospace datasheets were combined. This document now supports Commercial, Industrial, and Military Temperature devices.	
	Table 1 was updated.	page i-i
	The "Ordering Information" section was updated.	page i-ii
	"Plastic Device Resources" table was updated.	page i-ii
	The Long Term Jitter Peak-to-Peak Max. in the "PLL Electrical Specifications" table was updated.	page 1-21
	The "Calculating Typical Power Dissipation" section was updated.	page 1-31
	"Performance Retention" section	page 1-34
	Table 1-19	page 1-35
	Table 1-21 was updated.	page 1-36
	Table 1-22 was updated.	page 1-37
	Table 1-24 was updated.	page 1-41
	Table 1-48 was updated.	page 1-56
v3.4	The "Temperature Grade Offerings" table is new.	page i-iv
	The "Speed Grade and Temperature Matrix" table is new.	page i-iv
	The "ProASICPLUS Clock Management System" section was updated.	page 1-13
	The "Lock Signal" section was updated.	page 1-16
	The "PLL Electrical Specifications" table was updated.	page 1-21
	The "User Security" section was updated.	page 1-23
	The "Design Environment" section was updated.	page 1-28
	Table 1-16 was updated.	page 1-30
	The "Asynchronous FIFO Full and Empty Transitions" section was updated.	page 1-69
	The "AVDD PLL Power Supply" section in the "Pin Description" section was updated.	page 1-77
v3.3	The "144-Pin TQFP" table on page 2-4 was updated. The following pins changed: Pin $15=$ GLMX1 Pin $16=$ GL1 Pin $21=$ GL2 Pin $88=$ GL3 Pin93 = GL4 Pin $94=$ GLMX2	page 2-4

Previous version	Changes in current version (v5.8)	Page
v3.2	The "ProASICPLUS Clock Management System" section was updated.	page 1-13
	Figure 1-14 was updated.	page 1-14
	Table 1-7 is new.	page 1-15
	Figure 1-20 was updated.	page 1-19
	The "PLL Electrical Specifications" section was updated.	page 1-21
	Figure 1-26 was updated.	page 1-45
	In the "Calculating Typical Power Dissipation" section, P9 was changed to 7.5 mW .	page 1-31
	The "Programming, Storage, and Operating Limits" section was updated.	page 1-34
	The "Recommended Design Practice for VPN/VPP" section was updated.	page 1-78
v3.1	The datasheet was updated to include references to guidelines concerning the use of certain ProASIC는 I/O standards.	
v3.0	In Table 1-2 on page 1-8, the Memory Rows - Bottom coordinates were changed.	page 1-8
	Figure 1-8 was updated.	page 1-8
	The $\mathrm{V}_{\text {IL }}$ Minimum in the Table 1-24 was changed from 0.3 to -0.3.	page 1-41
	In the "Output Buffer Delays" section, the OB25LPLL t ${ }_{\text {DHL }}$ Standard changed to 5.3.	page 1-48
	In the "Sample Macrocell Library Listing" section, the AND2 Standard maximum changed to 0.7 and the -F maximum changed to 0.8 .	page 1-55
v2.0	The Table 1 was updated.	page i-i
	The "Ordering Information" section was updated.	page i-ii
	The "Plastic Device Resources" section was updated.	page i-ii
	The "ProASICPLUS Architecture" section was updated.	page 1-2
	Table 1-2 was updated.	page 1-8
	Table 1-8 is new.	page 1-16
	Figure 1-11 is new.	page 1-10
	The Introduction section in the "ProASICPLUS Clock Management System" section was updated.	page 1-13
	The "Physical Implementation" section was updated.	page 1-13
	The "Functional Description" on page 1-13 was updated.	page 1-13
	Figure 1-14 on page 1-14 through Figure 1-20 on page 1-19 were updated.	page 1-14 to page 1-19
	The "PLL Electrical Specifications" on page 1-21 was updated.	page 1-21
	Figure 1-25 on page 1-27 was updated.	page 1-27
	The "Calculating Typical Power Dissipation" on page 1-31 was updated.	page 1-31
	The 'Nominal Supply Voltages' section was updated.	page 1-34
	The Table 1-24 was updated.	page 1-41
	The "Tristate Buffer Delays" on page 1-45 was updated.	page 1-45
	The "Output Buffer Delays" on page 1-48 was updated.	page 1-48
	The "Input Buffer Delays" on page 1-50 was updated.	page 1-50
	"Global Routing Skew" on page 1-54 was updated.	page 1-54
	The "Sample Macrocell Library Listing " on page 1-55 was updated.	page 1-55
	The "Pin Description" on page 1-77 was updated.	page 1-77
	The following pins have been changed in the "100-Pin TQFP" table:	page 2-1
	Pin Number Function Pin Number Function	
	10 I/O (GLMX1) 60 GL3	
	11 GL1 61 PPECL2 (I/P)	
	13 NPECL1 63 NPECL2	
	15 PPECL1 $/ 1 / \mathrm{P}) \quad 65$ GL4	
	16 GL2 66 I/O (GLMX2)	

Previous version	Changes in current version (v5.8)			Page
v2.0 (continued)	"144-Pin TQFP" section is new.			page 2-3
	The following pins have been changed in the "208-Pin PQFP" table: Pin Number Function Pin Number Function 23 I/O (GLMX1) 128 GL3 24 GL1 129 PPECL2 (I/P) 26 NPECL1 132 NPECL2 28 PPECL1 (I/P) 134 GL4 30 GL2 135 I/O (GLMX2)			page 2-5
	The following pins have been changed in the "456-Pin PBGA" table: Pin Number Function Pin Number Function M1 GL1 N22 NPECL2 M2 GL2 N23 GL3 M22 GL4 N25 I/O (GLMX2) N2 I/O (GLMX1) P5 NPECL1 N4 PPECL1 (I/P) P26 PPECL2 (I/P)			page 2-22
	The following pins have been changed in the "144-Pin FBGA" table: Pin Number Function Pin Number Function C2 GL2 F9 GL4 D12 I/O (GLMX2)F11 PPECL2 (I/P E11 NPECL2 F12 GL3 F1 GL1 G1 PPECL1 (I/P) F3 I/O (GLMX1) G4 NPECL1			page 2-37
	The following pins have been changed in the "256-Pin FBGA" table: Pin Number Function Pin Number Function H1 GL1 H16 GL4 H2 NPECL1 $\mathrm{J1}$ GL2 H3 I/O (GLMX1) J2 PPECL1 (I/P) H13 I/O (GLMX2) J13 PPECL2 (I/P) H14 NPECL2 J16 GL3			page 2-40
	The following pins have been changed in the "484-Pin FBGA" table: Pin Number Function Pin Number Function L4 GL1 L19 GL4 L5 NPECL1 M4 GL2 L6 I/O (GLMX1) M5 PPECL1 (I/P) L16 I/O (GLMX2) M16 PPECL2 (I/P) L17 NPECL2 M19 GL3			page 2-45
	The following pins have been changed in the "676-Pin FBGA" table: Pin Number Function Pin Number Function N1 GL1 N25 GL4 N3 I/O (GLMX1) P1 GL2 N5 NPECL1 P5 PPECL1 (I/P) N22 GL3 P22 I/O (GLMX2) N24 NPECL2 P24 PPECL2 (I/P)			page 2-51
	The following pins have been changed in the "896-Pin FBGA" table: Pin Number Function Pin Number Function R2 I/O (GLMX1) T3 GL2 R4 NPECL1 T4 PPECL1 (I/P) R5 GL1 T26 PPECL2 (I/P) R27 NPECL2 T27 GL4 R29 I/O (GLMX2) T28 GL3			page 2-59
	The following pins have been changed in th Pin Number Function U4 I/O (GLMX1) U6 NPECL1 U7 GL1 V5 GL2 V6 PPECL1 (I/P)	"1152-Pin FBGA Pin Number U29 U31 V28 V29 V30	e: Function NPECL2 I/O (GLMX2) PPECL2 (I/P) GL4 GL3	page 2-69

ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Previous version	Changes in current version (v5.8)	Page
Advanced v0.7	The "ProASICPLUS Architecture" section was updated.	page 1-2
	The "Array Coordinates" section and Table 1-2 are new.	page 1-8
	The "Power-Up Sequencing" section is new.	page 1-10
	"I/O Features" section was updated.	page 1-9
	The "Timing Control and Characteristics" section was updated. "Physical Implementation" section, "Functional Description" section, "Lock Signal" section, and "PLL Configuration Options" section are new.	$\begin{aligned} & \text { page } 1-13 \text { to page } \\ & 1-16 \end{aligned}$
	"PLL Block - Top-Level View and Detailed PLL Block Diagram" section was updated.	page 1-14
	Figure 1-15 was updated.	page 1-15
	"Sample Implementations" section, "Adjustable Clock Delay" section, and the "Clock Skew Minimization" section are new.	page 1-16
	Figure 1-16, Figure 1-17, Figure 1-18, Figure 1-19, and Figure 1-20 are new.	$\begin{aligned} & \text { page } 1-17 \text { to page } \\ & 1-19 \end{aligned}$
	The "PLL Electrical Specifications" section is new.	page 1-21
	The "Design Environment" section was updated.	page 1-28
	Figure 1-26 was updated.	page 1-45
	The "Calculating Typical Power Dissipation" section was updated.	page 1-31
	The "DC Electrical Specifications (VDDP $=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$) " section was updated.	page 1-37
	The Table 1-24 was updated.	page 1-41
	The "DC Specifications (3.3 V PCI Operation)1" section was updated.	page 1-43
	The "Tristate Buffer Delays" section (the figure and table) have been updated.	page 1-45
	The "Output Buffer Delays" section (the figure and table) have been updated.	page 1-48
	The "Input Buffer Delays" section was updated.	page 1-50
	The "Global Input Buffer Delays" section was updated.	page 1-52
	The "Predicted Global Routing Delay" section was updated.	page 1-54
	The "Global Routing Skew" section was updated.	page 1-54
	The "Sample Macrocell Library Listing" section was updated.	page 1-55
	The "Pin Description" section was updated. GLMX is new.	page 1-77
	The "Recommended Design Practice for VPN/VPP" section was updated.	page 1-78
	Pin AK31 of FG1152 for the APA1000 changed to V $\mathrm{P}^{\text {P }}$	page 2-69
(Advanced v0.6)	The "Features and Benefits" on page i-i were updated.	page i-i
	The "ProASICPLUS Product Profile" on page i-i was updated.	page i-i
	The "Ordering Information" on page i-ii was updated.	page i-ii
	The "Plastic Device Resources" on page i-ii was updated.	page i-ii
	The "ProASICPLUS Architecture" on page 1-2 was updated.	page 1-2
	Table 1-1 was updated.	page 1-7
	Figure 1-14 was updated.	page 1-14
	The "Design Environment" section was updated.	page 1-28
	The "Package Thermal Characteristics " section was updated.	page 1-30
	The "Calculating Typical Power Dissipation" section was updated.	page 1-31
	The "Absolute Maximum Ratings* " section was updated.	page 1-34
	The "Programming, Storage, and Operating Limits" section was updated.	page 1-34
	The 'Nominal Supply Voltages' section was updated.	page 1-34
	The "Recommended Operating Conditions" section was updated.	page 1-36
	The "DC Electrical Specifications (VDDP $=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$)" section was updated.	page 1-37
	The "DC Electrical Specifications (VDDP $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ and $\mathrm{VDD}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$) Applies to Military Temperature and MIL-STD-883B Temperature Only" section was updated.	page 1-41

Previous version	Changes in current version (v5.8)	Page
Advanced v0.6 (continued)	The "Synchronous Write and Read to the Same Location" section was updated.	page 1-65
	The "Asynchronous Write and Synchronous Read to the Same Location" section was updated.	page 1-66
	The "Asynchronous FIFO Read " section was updated.	page 1-71
	The "Pin Description" section has been updated.	page 1-77
	The "Recommended Design Practice for VPN/VPP" section is new.	page 1-78
	The "100-Pin TQFP" section is new.	page 2-1
	The "484-Pin FBGA" section is new.	page 2-45
Advanced v0.5	The description for the V_{PN} pin has changed.	page 1-78
Advanced v0.4	The "Plastic Device Resources " section has been updated.	page i-ii
	Figure 1-12 and Figure 1-13 have been updated.	page 1-14
	The "Tristate Buffer Delays" section has been updated.	page 1-45
	The "Output Buffer Delays" section has been updated.	page 1-48
	The "Input Buffer Delays" section has been updated.	page 1-50
	The "Global Input Buffer Delays" section has been updated.	page 1-52
	The "456-Pin PBGA" section has been updated.	page 2-22
	The "676-Pin FBGA" section has been updated.	page 2-51
Advanced v0.3	The "ProASICPLUS Product Profile" section has been changed.	page i-i
	The "Plastic Device Resources" section has been updated.	page i-ii
	The "ProASICPLUS I/O Power Supply Voltages" sectionhas been updated.	page 1-9
	WDATA has ben changed to DI, and RDATA has been changed to DO to make them consistent with the signal names found in the Macro Library Guide.	
	Figure 1-21 and Figure 1-22 have been updated.	$\begin{aligned} & \text { page 1-25 } \\ & \text { and page 1-26 } \end{aligned}$
	The "Design Environment" section and Figure 1-26 have been updated.	$\begin{aligned} & \hline \text { page 1-28 } \\ & \text { and page 1-45 } \end{aligned}$
	The table in the "Package Thermal Characteristics" section has been updated.	page 1-30
	The "Calculating Typical Power Dissipation" section is new.	page 1-31
	The "Programming, Storage, and Operating Limits" section is new.	page 1-34
	The 'Nominal Supply Voltages' section has been updated.	page 1-34
	The "DC Electrical Specifications (VDDP $=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$) " section was updated.	page 1-37
	The "DC Electrical Specifications (VDDP $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ and $\mathrm{VDD}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$) Applies to Military Temperature and MIL-STD-883B Temperature Only" section was updated.	page 1-41
	The "Recommended Operating Conditions" section was updated.	page 1-36
	The "ProASICPLUS Clock Management System" section was updated.	page 1-13
	Figure 1-14 was updated.	page 1-14
Advanced v0.3 (continued)	Figure 1-13 is new.	page 1-12
	Tables 5, 6, and 7 from Advanced v0.3 were removed.	
	The "Memory Block SRAM Interface Signals" section was updated.	page 1-25
	The "Memory Block FIFO Interface Signals" section was updated.	page 1-26
	All pinout tables have been updated, and several packages are new: 208-Pin PQFP - APA150, APA300, APA450, APA600 456-Pin PBGA - APA150, APA300, APA450, APA600 144-Pin FBGA - APA150, APA300, APA450 256-Pin FBGA - APA150, APA300, APA450, APA600 676-Pin FBGA - APA600	
Advanced v0.1	Figure 1-23 has been updated.	page 1-27

Data Sheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definition of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

Export Administration Regulations (EAR)

The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Actel Safety Critical, Life Support, and High-Reliability Applications Policy

The Actel products described in this advance status datasheet may not have completed Actel's qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, lifesupport, and other high-reliability applications. Consult Actel's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel's products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.

Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.
POWER MATTERS

Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of system and power management solutions. Power Matters. Learn more at www.actel.com.

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655
USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.
River Court, Meadows Business Park Station Approach, Blackwater Camberley Surrey GU17 9AB United Kingdom
Phone +44 (0) 1276609300 Fax +44 (0) 1276607540

Actel Japan

EXOS Ebisu Building 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 21856460
Fax +852 21856488
www.actel.com.cn

[^0]: 1. Intrinsic delays have a variable component, coupled to the input slope of the signal. These numbers assume an input slope typical of local interconnect.
 2. All $-F$ parts are only available as commercial.
 3. $L H$ and $H L$ refer to the Q transitions from Low to High and High to Low, respectively.
[^1]: Figure 1-49 • ProASIC ${ }^{\text {PLUS }} \mathbf{V}_{\mathbf{P P}}$ and $\mathbf{V}_{\mathbf{P N}}$ Capacitor Requirements

