Data Sheet

FEATURES

High speed

120 MHz bandwidth, gain $=-1$
230 V/us slew rate
90 ns settling time to 0.1%
Ideal for video applications
0.02\% differential gain
$0.04{ }^{\circ}$ differential phase
Low noise
$1.7 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ input voltage noise
$1.5 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$ input current noise

Excellent dc precision

 1 mV maximum input offset voltage (over temperature)$0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ input offset drift
Flexible operation
Specified for $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ operation
± 3 V output swing into a 150Ω load
External compensation for gains 1 to 20
5 mA supply current
Available in tape and reel in accordance with EIA-481A standard

GENERAL DESCRIPTION

The \square \% 【 is a low noise ($1.7 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$), high speed op amp with custom compensation that provides the user with gains of 1 to 20 while maintaining a bandwidth $>50 \mathrm{MHz}$. Its 0.04° differential phase and 0.02% differential gain performance at 3.58 MHz and 4.43 MHz , driving reverse-terminated 50Ω or 75Ω cables, makes it ideally suited for professional video applications. The AD829 achieves its $230 \mathrm{~V} / \mu$ s uncompensated slew rate and 750 MHz gain bandwidth while requiring only 5 mA of current from power supplies.
The external compensation pin of the AD829 gives it exceptional versatility. For example, compensation can be selected to optimize the bandwidth for a given load and power supply voltage. As a gain-of-2 line driver, the -3 dB bandwidth can be increased to 95 MHz at the expense of 1 dB of peaking. Its output can also be clamped at its external compensation pin.

The AD829 exhibits excellent dc performance. It offers a minimum open-loop gain of $30 \mathrm{~V} / \mathrm{mV}$ into loads as low as 500Ω, a low input voltage noise of $1.7 \mathrm{nV} / \mathrm{VHz}$, and a low input offset voltage of 1 mV maximum. Common-mode rejection and power supply rejection ratios are both 120 dB .

This op amp is also useful in multichannel, high speed data conversion where its fast (90 ns to 0.1%) settling time is important. In such applications, the AD829 serves as an input buffer for 8-bit to 10 -bit ADCs and as an output I/V converter for high speed DACs.

Rev. I

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CONNECTION DIAGRAM

Figure 1. 8-Lead PDIP (N), CERDIP (Q), and SOIC (R)

Figure 2. 20-Terminal LCC
Operating as a traditional voltage feedback amplifier, the AD829 provides many of the advantages that a transimpedance amplifier offer. A bandwidth $>50 \mathrm{MHz}$ can be maintained for a range of gains through the replacement of the external compensation capacitor. The AD829 and the transimpedance amplifier are both unity-gain stable and provide similar voltage noise performance $(1.7 \mathrm{nV} / \sqrt{ } \mathrm{Hz})$; however, the current noise of the AD829 $(1.5 \mathrm{pA} / \sqrt{\mathrm{Hz}})$ is less than 10% of the noise of transimpedance amplifiers. The inputs of the AD829 are symmetrical.

PRODUCT HIGHLIGHTS

1. The input voltage noise of $2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$, current noise of $1.5 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$, and 50 MHz bandwidth for gains of 1 to 20 make the AD829 an ideal preamp.
2. A differential phase error of 0.04 and a 0.02% differential gain error, at the 3.58 MHz NTSC, 4.43 MHz PAL, and SECAM color subcarrier frequencies, make the op amp an outstanding video performer for driving reverse-terminated 50Ω and 75Ω cables to $\pm 1 \mathrm{~V}$ (at their terminated end).
3. The AD829 can drive heavy capacitive loads.
4. Performance is fully specified for operation from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ supplies.
5. The AD829 is available in PDIP, CERDIP, and small outline packages. Chips and MIL-STD-883B parts are also available. The 8 -lead SOIC is available for the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

TABLE OF CONTENTS

Features 1
General Description 1
Connection Diagram 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
Thermal Characteristics 5
Metallization Photo 5
ESD Caution 5
Typical Performance Characteristics6
REVISION HISTORY
10/11—Rev. H to Rev. I
Change to Table 2 5
4/09—Rev. G to Rev. H
Changes to Features 1
Changes to Quiescent Current Parameter, Table 1 4
Changes to Table 2 5
Added Thermal Characteristics Section and Table 3 5
Updated Outline Dimensions 17
Changes to Ordering Guide 19
4/04—Rev. F to Rev. G
Added Figure 1; Renumbered Sequentially 4
Changes to Ordering Guide 5
Updated Table I. 11
Updated Figure 15 12
Updated Figure 16 13
Updated Outline Dimensions 14
Test Circuits 11
Theory of Operation 12
Externally Compensating the AD829. 12
Shunt Compensation 12
Current Feedback Compensation 13
Low Error Video Line Driver 15
High Gain Video Bandwidth, 3-Op-Amp Instrumentation Amplifier 16
Outline Dimensions 17
Ordering Guide 19
2/03—Rev. E to Rev. F Renumbered Figures Universal
Changes to Product Highlights 1
Changes to Specifications 2
Changes to Absolute Maximum Ratings 4
Changes to Ordering Guide 4
Updated Outline Dimensions 13

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \mathrm{dc}$, unless otherwise noted.
Table 1.

${ }^{1}$ Full power bandwidth $=$ slew rate $/ 2 \pi V_{\text {PEAK }}$.
${ }^{2}$ Tested at gain $=20, C_{\text {comp }}=0 \mathrm{pF}$.
${ }^{3} 3.58 \mathrm{MHz}$ (NTSC) and 4.43 MHz (PAL and SECAM).
${ }^{4}$ Differential input capacitance consists of 1.5 pF package capacitance plus 3.5 pF from the input differential pair.

Data Sheet

AD829

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Internal Power Dissipation ${ }^{1}$	
\quad 8-Lead PDIP (N)	1.3 W
8-Lead SOIC (R)	0.9 W
8-Lead CERDIP (Q)	1.3 W
20-Terminal LCC (E)	0.8 W
Differential Input Voltage ${ }^{2}$	$\pm 6 \mathrm{~V}$
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	
\quad 8-Lead CERDIP (Q) and 20-Terminal LCC (E)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\quad 8-Lead PDIP (N) and 8-Lead SOIC (R)	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	
\quad AD829J	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
AD829A	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AD829S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

${ }^{1}$ Maximum internal power dissipation is specified so that T_{j} does not exceed $150^{\circ} \mathrm{C}$ at an ambient temperature of $25^{\circ} \mathrm{C}$.
${ }^{2}$ If the differential voltage exceeds 6 V , external series protection resistors should be added to limit the input current.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
THERMAL CHARACTERISTICS
Table 3.

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
8-Lead PDIP (N)	100 (derates at $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead CERDIP (Q)	110 (derates at $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	${ }^{\circ} \mathrm{C} / \mathrm{W}$
20-Lead LCC (E)	77	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead SOIC (R)	125 (derates at $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	${ }^{\circ} \mathrm{C} / \mathrm{W}$

METALLIZATION PHOTO

Figure 3. Metallization Photo; Contact Factory for Latest Dimensions, Dimensions Shown in Inches and (Millimeters)

Figure 4. Maximum Power Dissipation vs. Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Input Common-Mode Range vs. Supply Voltage

Figure 6. Output Voltage Swing vs. Supply Voltage

Figure 7. Output Voltage Swing vs. Resistive Load

Figure 8. Quiescent Current vs. Supply Voltage

Figure 9. Input Bias Current vs. Temperature

Figure 10. Closed-Loop Output Impedance vs. Frequency

Figure 11. Quiescent Current vs. Temperature

Figure 12. Short-Circuit Current Limit vs. Ambient Temperature

Figure 13. $-3 d B$ Bandwidth vs. Temperature

Figure 14. Open-Loop Gain and Phase vs. Frequency

Figure 15. Open-Loop Gain vs. Resistive Load

Figure 16. Power Supply Rejection Ratio (PSRR) vs. Frequency

Figure 17. Common-Mode Rejection Ratio (CMRR) vs. Frequency

Figure 18. Large Signal Frequency Response

Figure 19. Output Swing and Error vs. Settling Time

Figure 20. Total Harmonic Distortion (THD) vs. Frequency

Figure 21. Second and Third THD vs. Frequency

Figure 22. Input Voltage Noise Spectral Density

Figure 23. Slew Rate vs. Temperature

Figure 24. Differential Phase and Gain vs. Supply Voltage

Figure 25. Gain-to-2 Follower Large Signal Pulse Response (See Figure 32)

Figure 26. Gain-of-2 Follower Small Signal Pulse Response (See Figure 32)

Figure 27. Gain-of-20 Follower Large Signal Pulse Response (See Figure 33)

Figure 28. Gain-of-20 Follower Small Signal Pulse Response (See Figure 33)

Figure 29. Unity-Gain Inverter Large Signal Pulse Response (See Figure 34)

Figure 30. Unity-Gain Inverter Small Signal Pulse Response (See Figure 34)

TEST CIRCUITS

Figure 31. Offset Null and External Shunt Compensation Connections

Figure 32. Follower Connection, Gain $=2$

Figure 33. Follower Connection, Gain $=20$

Figure 34. Unity-Gain Inverter Connection

THEORY OF OPERATION

The AD829 is fabricated on the Analog Devices, Inc., proprietary complementary bipolar (CB) process, which provides PNP and NPN transistors with similar f_{T} of 600 MHz . As shown in Figure 35, the AD829 input stage consists of an NPN differential pair in which each transistor operates at a $600 \mu \mathrm{~A}$ collector current. This gives the input devices a high transconductance, which in turn gives the AD829 a low noise figure of $2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at 1 kHz .

Figure 35. Simplified Schematic
The input stage drives a folded cascode that consists of a fast pair of PNP transistors. These PNPs drive a current mirror that provides a differential-input-to-single-ended-output conversion. The high speed PNPs are also used in the current-amplifying output stage, which provides a high current gain of 40,000 . Even under heavy loading conditions, the high f_{T} of the NPN and PNPs, produced using the CB process, permit cascading two stages of emitter followers while maintaining 60 phase margin at closed-loop bandwidths greater than 50 MHz .
Two stages of complementary emitter followers also effectively buffer the high impedance compensation node (at the Ccomp pin) from the output so that the AD829 can maintain a high dc openloop gain, even into low load impedances (92 dB into a 150Ω load and 100 dB into a $1 \mathrm{k} \Omega$ load). Laser trimming and PTAT biasing ensure low offset voltage and low offset voltage drift, enabling the user to eliminate ac coupling in many applications.
For added flexibility, the AD829 provides access to the internal frequency compensation node. This allows users to customize the frequency response characteristics for a particular application.
Unity-gain stability requires a compensation capacitance of 68 pF (Pin 5 to ground), which yields a small signal bandwidth of 66 MHz and slew rate of $16 \mathrm{~V} / \mu \mathrm{s}$. The slew rate and gain bandwidth product varies inversely with compensation capacitance. Table 4 and Figure 37 show the optimum compensation capacitance and the resulting slew rate for a desired noise gain.
For gains between 1 and 20, choose C Comp to keep the small signal bandwidth relatively constant. The minimum gain that will still provide stability depends on the value of the external compensation capacitance.

An RC network in the output stage (see Figure 35) completely removes the effect of capacitive loading when the amplifier compensates for closed-loop gains of 10 or higher. At low frequencies, and with low capacitive loads, the gain from the compensation node to the output is very close to unity. In this case, C is bootstrapped and does not contribute to the compensation capacitance of the device. As the capacitive load increases, a pole forms with the output impedance of the output stage, which reduces the gain, and subsequently, C is incompletely bootstrapped. Therefore, some fraction of C contributes to the compensation capacitance, and the unity-gain bandwidth falls. As the load capacitance is further increased, the bandwidth continues to fall, and the amplifier remains stable.

EXTERNALLY COMPENSATING THE AD829

The AD829 is stable with no external compensation for noise gains greater than 20. For lower gains, two different methods of frequency compensating the amplifier can be used to achieve closed-loop stability: shunt and current feedback compensation.

SHUNT COMPENSATION

Figure 36 and Figure 37 show that shunt compensation has an external compensation capacitor, $\mathrm{C}_{\text {сомр }}$, connected between the compensation pin and ground. This external capacitor is tied in parallel with approximately 3 pF of internal capacitance at the compensation node. In addition, a small capacitance, $\mathrm{C}_{\text {LEAD }}$, in parallel with resistor R2, compensates for the capacitance at the inverting input of the amplifier.

Figure 36. Inverting Amplifier Connection Using External Shunt Compensation

Figure 37. Noninverting Amplifier Connection Using External Shunt Compensation

Table 4 gives the recommended $\mathrm{C}_{\text {comp }}$ and $\mathrm{C}_{\text {lead }}$ values, as well as the corresponding slew rates and bandwidth. The capacitor values were selected to provide a small signal frequency response with $<1 \mathrm{~dB}$ of peaking and $<10 \%$ overshoot. For Table $4, \pm 15 \mathrm{~V}$
supply voltages should be used. Figure 38 is a graphical extension of Table 4, which shows the slew rate/gain trade-off for lower closed-loop gains, when using the shunt compensation scheme.

Figure 38. Value of $C_{\text {сомр }}$ and Slew Rate vs. Noise Gain

CURRENT FEEDBACK COMPENSATION

Bipolar, nondegenerated, single-pole, and internally compensated amplifiers have their bandwidths defined as

$$
f_{T}=\frac{1}{2 \pi r_{e} C_{\text {COMP }}}=\frac{I}{2 \pi \frac{k T}{q} C_{\text {COMP }}}
$$

where:
f_{T} is the unity-gain bandwidth of the amplifier.
I is the collector current of the input transistor.

Cсомр is the compensation capacitance.
r_{e} is the inverse of the transconductance of the input transistors. $k T / q$ approximately equals 26 mV at $27^{\circ} \mathrm{C}$.
Because both f_{T} and slew rate are functions of the same variables, the dynamic behavior of an amplifier is limited. Because

$$
\text { Slew } \text { Rate }=\frac{2 I}{C_{\text {СОМР }}}
$$

then

$$
\frac{\text { Slew Rate }}{f_{T}}=4 \pi \frac{k T}{q}
$$

This shows that the slew rate is only $0.314 \mathrm{~V} / \mu \mathrm{s}$ for every megahertz of bandwidth. The only way to increase the slew rate is to increase the f_{T}, and that is difficult because of process limitations. Unfortunately, an amplifier with a bandwidth of 10 MHz can only slew at $3.1 \mathrm{~V} / \mu \mathrm{s}$, which is barely enough to provide a full power bandwidth of 50 kHz .

The AD829 is especially suited to a form of current feedback compensation that allows for the enhancement of both the full power bandwidth and the slew rate of the amplifier. The voltage gain from the inverting input pin to the compensation pin is large; therefore, if a capacitance is inserted between these pins, the bandwidth of the amplifier becomes a function of its feedback resistor and the capacitance. The slew rate of the amplifier is now a function of its internal bias (2I) and the compensation capacitance.

Table 4. Component Selection for Shunt Compensation

Follower Gain	Inverter Gain	R1 ($\mathbf{\Omega})$	R2 $\mathbf{(\Omega)}$	$\mathbf{C}_{\text {LEAD }}(\mathbf{p F})$	$\left.\mathbf{C}_{\text {comp }} \mathbf{(p F}\right)$	Slew Rate $\mathbf{(V / \mu s)}$	$\mathbf{- 3 ~ d B ~ S m a l l ~ S i g n a l ~ B a n d w i d t h ~ (M H z) ~}$
1		Open	100	0	68	16	66
2	-1	1 k	1 k	5	25	38	71
5	-4	511	2.0 k	1	7	90	76
10	-9	226	2.05 k	0	3	130	65
20	-19	105	2 k	0	0	230	55
25	-24	105	2.49	0	0	230	39
100	-99	20	2 k	0	0	230	7.5

Because the closed-loop bandwidth is a function of R_{F} and Ссомр (see Figure 39), it is independent of the amplifier closedloop gain, as shown in Figure 41. To preserve stability, the time constant of R_{F} and $\mathrm{C}_{\text {comp }}$ needs to provide a bandwidth of $<65 \mathrm{MHz}$. For example, with $\mathrm{C}_{\text {comp }}=15 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega$, the small signal bandwidth of the AD829 is 10 MHz . Figure 40 shows that the slew rate is in excess of $60 \mathrm{~V} / \mu \mathrm{s}$. As shown in Figure 41, the closed-loop bandwidth is constant for gains of -1 to -4 ; this is a property of the current feedback amplifiers.

Figure 39. Inverting Amplifier Connection Using Current Feedback Compensation

Figure 40. Large Signal Pulse Response of Inverting Amplifier Using Current Feedback Compensation, $C_{\text {сомp }}=15 \mathrm{pF}, \mathrm{C1}=15 \mathrm{pF} R F=1 \mathrm{k} \Omega, R 1=1 \mathrm{k} \Omega$

Figure 41. Closed-Loop Gain vs. Frequency for the Circuit of Figure 38

Figure 42 is an oscilloscope photo of the pulse response of a unitygain inverter that has been configured to provide a small signal bandwidth of 53 MHz and a subsequent slew rate of $180 \mathrm{~V} / \mu \mathrm{s}$; $\mathrm{R}_{\mathrm{F}}=3 \mathrm{k} \Omega$ and $\mathrm{C}_{\text {Comp }}=1 \mathrm{pF}$. Figure 43 shows the excellent pulse response as a unity-gain inverter, this using component values of $\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega$ and $\mathrm{C}_{\text {Comp }}=4 \mathrm{pF}$.

Figure 42. Large Signal Pulse Response of the Inverting Amplifier Using Current Feedback Compensation, Ссомр $=1 \mathrm{pF}, R_{F}=3 \mathrm{k} \Omega, R 1=3 \mathrm{k} \Omega$

Figure 43. Small Signal Pulse Response of Inverting Amplified Using Current Feedback Compensation, $C_{\text {comp }}=4 \mathrm{pF}, R_{F}=1 \mathrm{k} \Omega, R 1=1 \mathrm{k} \Omega$

Figure 44 and Figure 45 show the closed-loop frequency response of the AD829 for different closed-loop gains and different supply voltages.

Figure 44. Closed-Loop Frequency Response for the Inverting Amplifier Using Current Feedback Compensation

Figure 45. Closed-Loop Frequency Response vs. Supply for the Inverting Amplifier Using Current Feedback Compensation

When a noninverting amplifier configuration using a current feedback compensation is needed, the circuit shown in Figure 46 is recommended. This circuit provides a slew rate twice that of the shunt compensated noninverting amplifier of Figure 47 at the expense of gain flatness. Nonetheless, this circuit delivers 95 MHz bandwidth with 1 dB flatness into a back-terminated cable, with a differential gain error of only 0.01% and a differential phase error of only 0.015 at 4.43 MHz .

Figure 46. Noninverting Amplifier Connection Using Current Feedback Compensation

Figure 47. Video Line Driver with a Flatness over Frequency Adjustment

LOW ERROR VIDEO LINE DRIVER

The buffer circuit shown in Figure 47 drives a back-terminated 75Ω video line to standard video levels ($1 \mathrm{~V} \mathrm{p}-\mathrm{p}$), with 0.1 dB gain flatness to 30 MHz and with only 0.04° and 0.02% differential phase and gain at the 4.43 MHz PAL color subcarrier frequency. This level of performance, which meets the requirements for high definition video displays and test equipment, is achieved using only 5 mA quiescent current.

HIGH GAIN VIDEO BANDWIDTH, 3-OP-AMP INSTRUMENTATION AMPLIFIER

Figure 48 shows a 3-op-amp instrumentation amplifier circuit that provides a gain of 100 at video bandwidths. At a circuit gain of 100 , the small signal bandwidth equals 18 MHz into a FET probe. Small signal bandwidth equals 6.6 MHz with a 50Ω load. The 0.1% settling time is 300 ns .

The input amplifiers operate at a gain of 20, while the output op amp runs at a gain of 5 . In this circuit, the main bandwidth limitation is the gain/bandwidth product of the output amplifier. Extra care should be taken while breadboarding this circuit because even a couple of extra picofarads of stray capacitance at the compensation pins of A1 and A2 will degrade circuit bandwidth.

Figure 48. High Gain Video Bandwidth, 3-Op-Amp In-Amp Circuit

OUTLINE DIMENSIONS

Figure 49. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

Figure 50. 8-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
(N-8)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EOUIVALENTS FOR (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 51. 8-Lead Ceramic Dual In-Line [CERDIP] (Q-8)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 52. 20-Terminal Ceramic Leadless Chip Carrier [LCC] (E-20-1)
Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package Option
AD829AR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829AR-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829ARZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829ARZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829ARZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829JN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead PDIP	N-8
AD829JNZ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead PDIP	N-8
AD829JR	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829JR-REEL	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829JR-REEL7	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829JRZ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829JRZ-REEL	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829JRZ-REEL7	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8
AD829AQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead CERDIP	Q-8
AD829SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead CERDIP	Q-8
AD829SQ/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead CERDIP	Q-8
5962-9312901MPA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead CERDIP	Q-8
AD829SE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead LCC	E-20-1
5962-9312901M2A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead LCC	E-20-1
AD829JCHIPS		Die	
AD829SCHIPS		Die	
AD829AR-EBZ		Evaluation Board	

[^0]
NOTES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
AD829AR-REEL7 AD829AR AD829SQ 5962-9312901MPA AD829JR-REEL7 AD829JNZ AD829JRZ-REEL AD829JR-REEL AD829JRZ-REEL7 AD829SQ/883B AD829AR-EBZ 5962-9312901M2A AD829JR AD829ARZ-
REEL7 AD829JN AD829ARZ AD829JRZ AD829AQ AD829SE/883B AD829AR-REEL AD829ARZ-REEL

[^0]: ${ }^{1} Z=$ RoHS Compliant Part.

