

SPX29150/51/52/53

1.5A Low Dropout Voltage Regulator

Adjustable & Fixed Output, Fast Response Time

FEATURES

- Adjustable Output Down To 1.25V
- 1% Output Accuracy
- Output Current of 1.5A
- Low Dropout Voltage of 390mV @ 1.5A
- Extremely Tight Load and Line Regulation
- Extremely Fast Transient Response
- Reverse-Battery Protection
- Zero Current Shutdown (5 pin version)
- Error Flag Signal Output for Out of Regulation State (5 pin version)
- Standard TO-220 and TO-263 Packages

APPLICATIONS

- Powering VGA & Sound Card
- LCD Monitors
- USB Power Supply
- Power PC[™] Supplies
- SMPS Post Regulator
- High Efficiency "Green" Computer Systems
- High Efficiency Linear Power Supplies
- Portable Instrumentation
- Constant Current Regulators
- Adjustable Power Supplies
- Battery Charger

Now Available in Lead Free Packaging

Refer to page 8 for pinouts.

DESCRIPTION

The SPX29150/51/52/53 are 1.5A, highly accuracy voltage regulators with a low drop out voltage of 390mV dropout (typical) @ 1.5A. These regulators are specifically designed for low voltage applications that require a low dropout voltage and a fast transient response. They are fully fault protected against over-current, reverse battery, and positive and negative voltage transients. On-Chip trimming adjusts the reference voltage to 1% initial accuracy. Other features in the 5 pin versions include Enable, and Error Flag.

The SPX29150/51/52/53 is offered in 3 & 5-pin TO-220 & TO-263 packages. For a 3A version, refer to the SPX29300 data sheet.

TYPICAL APPLICATION CIRCUIT V_{IN} 1 SPX29150 3 + 10 F 0.8 F + 1 GND | ADJ | ADJ | R1 10 F R2 R2

Figure 1. Fixed Output Linear Regulator

Figure 2. Adjustable Output Linear Regulator

ABSOLUTE MAXIMUM RATINGS

Lead Temperature (soldering, 5 seconds)	260°C
Storage Temperature Range	65°C to +150°C
Operating Junction Temperature Range	40°C to +125°C
Input Voltage (Note 7)	16V

- ELECTRICAL CHARACTERISTICS

at $V_{IN} = V_{OUT} + 1V$ and $I_{OUT} = 10mA$, $C_{IN} = 6.8 \mu F$, $C_{OUT} = 10 \mu F$, $T_A = 25 ^{\circ}C$, unless otherwise specified. The Boldface applies over the junction temperature range. Adjustable versions are set to 5.0V.

		SPX29150/51			
PARAMETER	CONDITIONS	TYP	MIN	MAX	UNITS
Fixed Voltage Options					
1.8V Version					
Output Voltage	$I_{OUT} = 10 \text{mA}$ $10 \text{mA} \le I_{OUT} \le 1.5 \text{A}, 2.5 \text{V} \le V_{IN} \le 16 \text{V}$	1.8 1.8	1.782 1.764	1.818 1.836	V
2.5V Version					
Output Voltage	$I_{OUT} = 10 \text{mA}$ $10 \text{mA} \le I_{OUT} \le 1.5 \text{A}, 3.5 \text{V} \le V_{IN} \le 16 \text{V}$	2.5 2.5	2.475 2.450	2.525 2.550	V
3.3V Version					
Output Voltage	$I_{OUT} = 10 \text{mA}$ $10 \text{mA} \le I_{OUT} \le 1.5 \text{A}, 4.3 \text{V} \le V_{IN} \le 16 \text{V}$	3.3 3.3	3.267 3.234	3.333 3.366	V
5.0V Version					
Output Voltage	$I_{OUT} = 10 \text{mA}$ $10 \text{mA} \le I_{OUT} \le 1.5 \text{A}, 6.0 \text{V} \le V_{IN} \le 16 \text{V}$	5.0 5.0	4.950 4.900	5.050 5.100	V
All Voltage Options		SPX29150/51/52/53			
Line Regulation	$I_{OUT} = 10 \text{mA}, (V_{OUT} + 1 \text{V}) \le V_{IN} \le 16 \text{V}$	0.1		0.5	%
Load Regulation	$V_{IN} = V_{OUT} + 1V$, $10mA \le I_{OUT} \le I_{FULLLOAD}$	0.2		1	%
$\Delta V/\Delta T$	V _{OUT} Temp Coefficient	13		100	ppm/°C
Dropout Voltage (Note 1, except 1.8V)	$I_{\text{OUT}} = 100\text{mA}$ $I_{\text{OUT}} = 750\text{mA}$	70 230		200 600	mV
Ground Current	I _{OUT} =1.5A	390			A
(Note 3)	$I_{OUT} = 750 \text{mA}, V_{IN} = V_{OUT} + 1V$ $I_{OUT} = 1.5 \text{A}$	12 45		25	mA
Ground Pin Current at Dropout	V_{IN} =0.1V less than specified V_{OUT} , I_{OUT} =10mA	0.9			mA
Current Limit	V _{OUT} =0V (Note 2)	2.2	1.7		A
Output Noise Voltage (10Hz to 100kHz)	$C_L=10\mu F$	400			$\mu V_{_{RMS}}$
$I_L=100\text{mA}$	C _L =33μF	260			
Reference Voltage	Adjustable version only	1.240	1.228 1.215	1.252 1.265	V
Reference Voltage	Adjustable version only (Note 8)		1.203	1.277	
Adjust Pin Bias Current	ent 40			80 120	nA
Reference Voltage Temp. Coeff.	(Note 4)	13			ppm/°C
Adjust Pin Bias Current Temp. Coeff.		0.1			nA/°C

at $V_{IN} = V_{OUT} + 1V$ and $I_{OUT} = 10 mA$, $C_{IN} = 6.8 \mu F$, $C_{OUT} = 10 \mu F$, $T_A = 25 ^{\circ} C$, unless otherwise specified. The Boldface applies over the junction temperature range. Adjustable versions are set to 5.0V.

PARAMETER	CONDITIONS	TYP	MIN	MAX	UNITS
FLAG OUTPUT (ERF	ROR COMPARATOR)	S	PX29150/	29151/2915	53
Output Leakage Current	V _{OH} =16V	0.1		1 2	μΑ
Output Low Voltage	Device set for 5V, V_{IN} =4.5V, I_{OL} =250 μ A	200		300 400	mV
Upper Threshold Voltage	Device set for 5V, (Note 5)	60	40 25		mV
Lower Threshold Voltage	Device set for 5V, (Note 5)	75		95 140	mV
Hysteresis	Device set for 5V, (Note 5)	15			mV
ENABLE Input			SPX291	51/29152	
Input Logic Voltage Low (OFF) High (ON)	V _{IN} <10V		2.4	0.8	V
ENABLE Input Pin	V _{EN} =16V	100		600 750	μΑ
	V_{EN} =0.8V			1 2	μΑ
Regulator Output Current in Shutdown	(Note 6)	10		500	μΑ
Thermal Resistance	TO-200 Junction to Case, at Tab TO-220 Junction to Ambient TO-263 Junction to Case, at Tab	3 60 3			°C/W
	TO-263 Junction to Ambient	60			

NOTES:

Note 1: Dropout voltage is defined as the input to output differential when the output voltage drops to 99% of its nominal value.

- Note 2: $V_{IN} = V_{OUT}$ (NOMINAL) +1V. For example, use $V_{IN} = 4.3V$ for a 3.3V regulator. Employ pulse-testing procedures to minimize temperature rise.
- Note 3: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the load current to the ground current.

Note 4: Thermal regulation is defined as the change in the output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects.

Note 5: Comparator threshold is expressed in terms of a voltage differential at the Adjust terminal below the nominal reference voltage measured 6V input. To express these thresholds in terms of output voltage change, multiply the error amplifier gain = $V_{OUT}/V_{REF} = (R1 + R2)/R2$. For example, at a programmable output voltage of 5V, the Error output is guaranteed to go low when the output drops by S_{OUT} is V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.7% guaranteed.

Note 6: $V_{EN} \le 0.8V$ and $V_{IN} \le 16V$, $V_{OUT} = 0$.

Note 7: Maximum positive supply voltage of 20V must be of limited duration (<100m_) < 1%. The maximum continuous supply voltage is 16V.

Note 8: $V_{REF} \le V_{OUT} \le (V_{IN}-1)$, $2.5V \le V_{IN} \le 16V$, $10mA \le I_L \le I_{FL}$, $T_j < T_{jmax}$.

FLAG Thermal Shutdown R2* R2*

TYPICAL PERFORMANCE CHARACTERISTICS

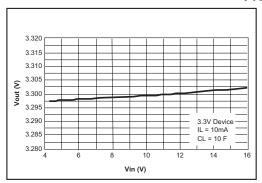


Figure 3. Line Regulation

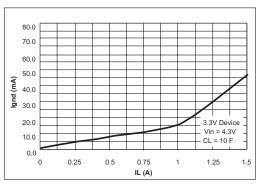


Figure 5. Ground Current vs Load Current

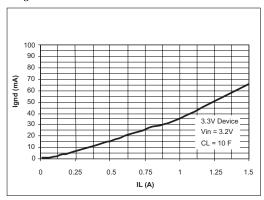


Figure 7. Ground Current vs Load Current in Dropout

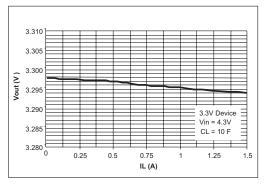


Figure 4. Load Regulation

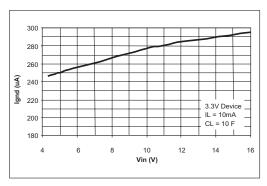


Figure 6. Ground Current vs Input Voltage

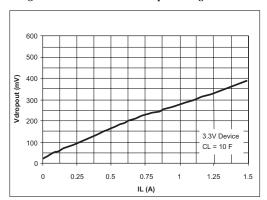


Figure 8. Dropout Voltage vs Load Current

TYPICAL PERFORMANCE CHARACTERISTICS

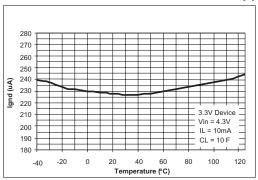


Figure 9. Ground Current vs Temperature at I_{LOAD} =10mA

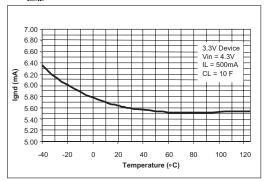


Figure 11. Ground Current vs Temperature at I_{LOAD} =500

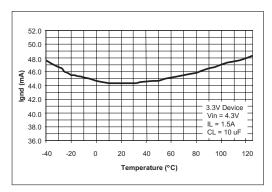


Figure 13. Ground Current vs Temperature at I_{LOAD} =1.5A

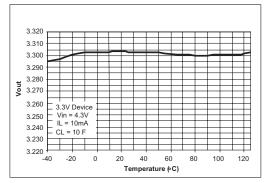


Figure 10. Output Voltage vs Temperature at I_{LOAD} =10mA

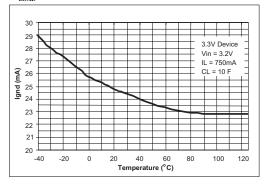


Figure 12. Output Voltage vs Temperature in Dropout at I_{LOAD} =750mA

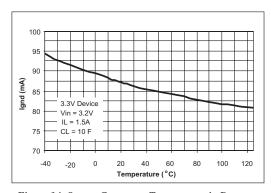


Figure 14. Output Current vs Temperature in Dropout at $I_{\rm LOAD}$ =1.5A

TYPICAL PERFORMANCE CHARACTERISTICS

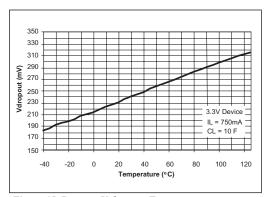


Figure 15. Dropout Voltage vs Temperature at I_{LOAD} =750mA

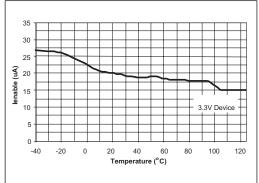


Figure 17. ENABLE Current vs Temperature at V_{EN}=16V

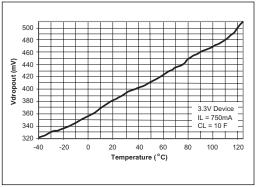


Figure 16. Dropout Voltage vs Temperature at I_{LOAD} =1.5A

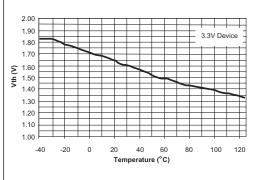


Figure 18. ENABLE Threshold vs Temperature

The SPX29150/51/52/53 incorporates protection against over-current faults, reversed load insertion, over temperature operation, and positive and negative transient voltage.

Thermal Considerations

Although the SPX29150/51/52/53 offers limiting circuitry for overload conditions, it is still necessary to insure that the maximum junction temperature is not exceeded in the application. Heat will flow through the lowest resistance path, the junction-to-case path. In order to insure the best thermal flow of the component, proper mounting is required. Consult the heatsink manufacturer for thermal resistance and heat sink design.

TO-220 Design Example:

Assume that V_{IN} = 10V, V_{OUT} = 5V, I_{OUT} = 1.5A, T_A = 50°C, θ_{HA} = 1°C/W, θ_{CH} = 2°C/W, and θ_{IC} = 3C°/W, where:

 $T_A = ambient temperature,$

 θ_{HA} = heatsink to ambient thermal resistance

 θ_{CH} = case to heatsink thermal resistance

 θ_{JC} = junction to case thermal resistance

The power calculated under these conditions is:

$$P_D = (V_{IN} - V_{OUT}) * I_{OUT} = 7.5W.$$

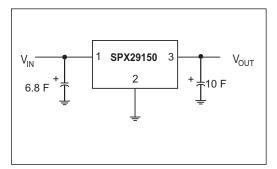


Figure 19. Fixed Output Linear Regulator

And the junction temperature is calculated as

$$T_J = T_A + P_D * (\theta_{HA} + \theta_{CH} + \theta_{JC}) \text{ or }$$

 $T_J = 50 + 7.5 * (1+2+3) = 95^{\circ}C$

Reliable operation is insured.

Capacitor Requirements

The output capacitor is needed to insure stability and minimize the output noise. The value of the capacitor varies with the load. However, a minimum value of $10\mu F$ aluminum capacitor will guarantee stability over all load conditions. A tantalum capacitor is recommended if a faster load transient response is needed. If the power source has a high AC impedance, a $0.1\mu F$ ceramic capacitor between input & ground is recommended.

Minimum Load Current

To ensure a proper behavior of the regulator under light load, a minimum load of 5mA for SPX29150/51/52/53 is required.

Typical Application Circuits

Figure 19 represents at typical fixed output regulator. Figure 20 represents an adjustable output regulator. The values of R1 and R2 set the output voltage value as follows: $V_{OUT} = V_{REF} * [1 + (R1/R2)]$. For best results, the total series resistance should be small enough to pass a minimum regulator load current of 5mA. A minimum value of $10k\Omega$ is recommended for R2 with a range between $10k\Omega$ and $47k\Omega$.

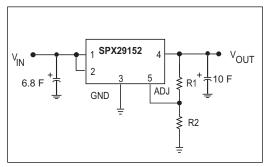
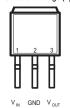
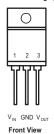



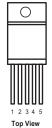
Figure 20. Adjustable Output Linear Regulator

TO-263-3 Package (T)

TO-263-5 Package (T5)



Top View


SPX29151	SPX29152	SPX29153
1) ENABLE	1) ENABLE	1) FLAG
2) INPUT	2) INPUT	2) INPUT
3) GND	3) GND	3) GND
4) OUTPUT	OUTPUT	4) OUTPUT
5) FLAG	5) ADJUST	5) ADJUST

TO-220-3 Package (U)

Front View

TO-220-5 Package (U5)

SPX29151	SPX29152	SPX29153
1) ENABLE	1) ENABLE	1) FLAG
2) INPUT	2) INPUT	2) INPUT
3) GND	3) GND	3) GND
4) OUTPUT	4) OUTPUT	4) OUTPUT
5) FLAG	5) ADJUST	5) ADJUST

^{*}Tab is internally connected to GND

ORDERING INFORMATION

PART NUMBER	ACCURACY	OUTPUT VOLTAGE	PACKAGE
SPX29150U-1.8	1.0%	1.8V	3 lead TO-220
SPX29150U-2.5	1.0%	2.5V	3 lead TO-220
SPX29150U-3.3	1.0%	3.3V	3 lead TO-220
SPX29150U-5.0	1.0%	5.0V	3 lead TO-220
SPX29150T-1.8	1.0%	1.8V	3 lead TO-263
SPX29150T-1.8/TR	1.0%	1.8V	3 lead TO-263
SPX29150T-2.5	1.0%	2.5V	3 lead TO-263
SPX29150T-2.5/TR	1.0%	2.5V	3 lead TO-263
SPX29150T-3.3	1.0%	3.3V	3 lead TO-263
SPX29150T-3.3/TR	1.0%	3.3V	3 lead TO-263
SPX29150T-5.0	1.0%	5.0V	3 lead TO-263
SPX29150T-5.0/TR	1.0%	5.0V	3 lead TO-263
SPX29151U5-1.8	1.0%	1.8V	5 lead TO-220
SPX29151U5-2.5	1.0%	2.5V	5 lead TO-220
SPX29151U5-3.3	1.0%	3.3V	5 lead TO-220
SPX29151U5-5.0	1.0%	5.0V	5 lead TO-220
SPX29151T5-1.8	1.0%	1.8V	5 lead TO-263
SPX29151T5-1.8/TR	1.0%	1.8V	5 lead TO-263
SPX29151T5-2.5	1.0%	2.5V	5 lead TO-263
SPX29151T5-2.5/TR	1.0%	2.5V	5 lead TO-263
SPX29151T5-3.3	1.0%	3.3V	5 lead TO-263
SPX29151T5-3.3/TR	1.0%	3.3V	5 lead TO-263
SPX29151T5-5.0	1.0%	5.0V	5 lead TO-263
SPX29151T5-5.0/TR	1.0%	5.0V	5 lead TO-263
SPX29152T5	1.0%	Adj	5 lead TO-263
SPX29152T5/TR	1.0%	Adj	5 lead TO-263
SPX29152U5	1.0%	Adj	5 lead TO-220
SPX29153T5	1.0%	Adj	5 lead TO-263
SPX29153T5/TR	1.0%	Adj	5 lead TO-263
SPX29153U5	1.0%	Adj	5 lead TO-220

Available in lead free packaging. To order add "-L" suffix to part number.

Example: SPX29153T5/TR = standard; SPX29153T5-L/TR = lead free

ANALOG EXCELLENCE

Sipex Corporation

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035

TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.